Publication:
The OTELO survey I. Description, data reduction, and multi-wavelength catalogue

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2019-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciencies
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Context. The evolution of galaxies through cosmic time is studied observationally by means of extragalactic surveys. The usefulness of these surveys is greatly improved by increasing the cosmological volume, in either depth or area, and by observing the same targets in different wavelength ranges. A multi-wavelength approach using different observational techniques can compensate for observational biases. Aims. The OTELO survey aims to provide the deepest narrow-band survey to date in terms of minimum detectable flux and emission line equivalent width in order to detect the faintest extragalactic emission line systems. In this way, OTELO data will complements other broad-band, narrow-band, and spectroscopic surveys. Methods. The red tunable filter of the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC) is used to scan a spectral window centred at 9175 Å, which is free from strong sky emission lines, with a sampling interval of 6 Å and a bandwidth of 12 Å in the most deeply explored EGS region. Careful data reduction using improved techniques for sky ring subtraction, accurate astrometry, photometric calibration, and source extraction enables us to compile the OTELO catalogue. This catalogue is complemented with ancillary data ranging from deep X-ray to far-infrared, including high resolution HST images, which allow us to segregate the different types of targets, derive precise photometric redshifts, and obtain the morphological classification of the extragalactic objects detected. Results. The OTELO multi-wavelength catalogue contains 11 237 entries and is 50% complete at AB magnitude 26.38. Of these sources, 6600 have photometric redshifts with an uncertainty δ z_(phot) better than 0.2 (1+z_(phot)). A total of 4336 of these sources correspond to preliminary emission line candidates, which are complemented by 81 candidate stars and 483 sources that qualify as absorption line systems. The OTELO survey results will be released to the public on the second half of 2019.
Description
© ESO 2019. Artículo firmado por 24 autores. This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the grants AYA2013 - 46724 - P, AYA2014 - 58861 - C3 - 1 - P, AYA2014 - 58861 - C3 - 2 - P, AYA2014 - 58861 - C3 - 3 - P, AYA2016 - 75808 - R, AYA2016 - 75931 - C2 - 2 - P, AYA2017 - 88007 - C3 - 1 - P and AYA2017 - 88007 - C3 - 2 - P. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. This study makes use of data from AEGIS, a multi-wavelength sky survey conducted with the Chandra, GALEX, Hubble, Keck, CFHT, MMT, Subaru, Palomar, Spitzer, VLA, and other telescopes and supported in part by the NSF, NASA, and the STFC. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of the NRC and CNRS. Based on observations obtained with WIRCam, a joint project of the CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX, the WIRDS (WIRcam Deep Survey) consortium, and the Canadian Astronomy Data Centre. This research was supported by a grant from the Agence Nationale de la Recherche ANR-07-BLAN-0228. José A. de Diego thanks the Instituto de Astrofísica de Canarias for it s support through the Programa de Excelencia Severo Ochoa and the Gobierno de Canarias for the Programa de Talento Tricontinental grant. Á. Bongiovanni thanks the anonymous Referee for her/his feedback and suggestions, and Terry Mahoney (at the IAC’s Scientific Editorial Service) for his subtantial improvements of the manuscript.
UCM subjects
Unesco subjects
Keywords
Citation
Collections