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Abstract—In this work we present ContainEnergy, a new
performance evaluation and profiling tool that uses software
containers to perform application runtime assessment, providing
energy and performance profiling data. It is focused on energy
efficiency for next generation workloads and IT infrastructure.

Index Terms—performance profiling, energy profiling, software
containers, performance counters, DVFS

I. INTRODUCTION

The electric power spent on datacenters reached 0.9% of
global energy consumption in 2015 and is expected to reach
4.5% in 2025. [1]. Thus, the development of solutions for
optimization of energy utilization is critically important.

We present ContainEnergy, a profiling tool designed to gen-
erate comprehensive energy and performance profiling data.
It uses a combination of software containers, performance
counters and DVFS to isolate application and allow user to
assess execution over different hardware and software setups.

II. OVERVIEW OF THE TOOL

ContainEnergy extracts raw data of applications inside con-
tainers, with an overhead of 1,18%. Meanwhile, DVFS gover-
nor is adjusted and raw energy/performance data are extracted
by performance counters. These raw values are combined
and processed, resulting in a comprehensive profiling dataset
crafted on top of the target system tuned throughout available
configurations. Figure 1 shows an overview of ContainEnergy.

III. EXPERIMENTAL SETUP

We evaluated the effectiveness of the proposed tool with
two next generation workloads:

• HEVC Video Transcoding: tests performed using Kvazaar
encoder [2] and industry standard video test sequence
RaceHorses 832x480 30.yuv (VT1);

• Machine Learning Image Classification (MLIC): in-
ference performance in AlexNet [3] [4] (ML1) and
SqueezeNet [5] [6] (ML2) on TensorFlow, 500 randomly
selected images of ImageNet [7] validation dataset.

As QoS constraint, we defined a n a verage r ange o f 25-30
frames per second (FPS) for HEVC and 25-30 inferences per
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Fig. 1. ContainEnergy Overview

second (IPS) for MLIC. Tests were performed on a Intel Core
i7 node, 16 frequency steps (0.8 to 4.2 Ghz) and 8 hardware
threads, resulting in 128 hardware configurations.

IV. RESULTS

Figure 2 shows ContainEnergy profiling results of VT1
HEVC transcoding. The sub-graph ”Energy (dBJ) - FPS”
combines Energy and FPS charts, selecting (coloring) feasible
configurations - i.e., that meet QoS constraints. Gray areas
represent settings that lead application to perform below
target threshold (< 25 FPS). White regions group system
configurations that exceed QoS levels (> 30 FPS).

Fig. 2. HEVC transcoding: RaceHorses 832x480 30.yuv / energy and
performance profiling on a Intel Core i7-7700 system



TABLE I
ML - ENERGY AND PERFORMANCE

IPS Energy (J) Power (W)
min max min max min max

ML1 7.46 29.41 191.30 666.77 3.6 29.86
threads (#) #1 #7 #4 #1 #1 #4
freq. (GHz) 0.8 4.2 1.2 4.2 1 4.2
exec. time (s) 67 17 45 28 67 18

ML2 12.2 45.46 128.57 384.56 3.5 28.56
threads (#) #1 #8 #7 #1 #1 #3
freq. (GHz) 0.8 4.2 1.2 4.2 0.8 4.2
exec. time (s) 41 11 32 17 41 13

Table I shows that SqueezeNet had better performance and
energy efficiency than AlexNet. Max performance was 55.2%
higher. While maintaining similar average instant power, dif-
ference in max energy consumption was 73.4%, as a result
of contraction in execution time and the consequent increase
of IPS. Using the same system configuration (#1@4.2 GHz),
AlexNet took 28s to complete the task, while SqueezeNet, 17s.

W.r.t. QoS applied on the target ML applications, the best
configuration resulted in energy savings / power reduction
of 30% / 40.53% (ML1), 51,37% / 73.25% / (ML2) in
comparison with best effort approach.

Figures 3 and 4 present energy and performance profiling of
AlexNet and SqueezeNet, respectively. Considering the QoS
region, SqueezeNet achieved best configuration (minimum
energy) with #6@2.2 GHz, with an average of 149.96 J, 7.5
W, and 25 IPS. AlexNet’s best setting was found with #8@3.2
GHz, with an average of 339,59 J, 16.98 W and 25 IPS.
Thus, complying with QoS constraints, SqueezeNet represents
55.8% in energy saving compared to AlexNet.

Whilst presenting similar accuracy, AlexNet’s model has
233 MB while SqueezeNet’s model, on the other hand, occu-
pies 5 MB. Therefore, the number of computations for a single
inference is bigger in AlexNet, implying in more processing
and energy usage.

Fig. 3. ML image inference: AlexNet / energy and performance profiling on
a Intel Core i7-7700 system

V. CONCLUSIONS

We proposed an energy and performance profiling tool -
ContainEnergy - based on software containers, DVFS, control
and hardware performance counters. We verified that similar
tools do not address the energy and performance profiling
properly for current and future workloads. We evaluated our
proposal with two case-studies: HEVC Video Transcoding
and Machine Learning Image Classification. Our tests demon-
strated that ContainEnergy is able to provide energy and
performance assessment, as well as act as data generation
tool for modeling and statistical analysis of new generation
workloads.
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