Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis.



Downloads per month over past year

Estévez Sánchez, Héctor and Palacios, Ainhoa and Gil, David and Anguita, Juan and Vallet Regí, María and González Ortiz, Blanca and Prados Rosales, Rafael and Luque-García, José L. (2020) Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis. Frontiers Microbiology, 11 . p. 800. ISSN 1664-302X

[thumbnail of Frontiers in Microbiolgy_Manuscript in review - repositorio.PDF]
Creative Commons Attribution.


Official URL:


Tuberculosis remains the leading cause of death from a single infection agent worldwide. In recent years, the occurrence of tuberculosis cases caused by drug-resistant strains has spread, and is expected to continue to grow. Therefore, the development of new alternative treatments to the use of antibiotics is highly important. In that sense, nanotechnology can play a very relevant role, due to the unique characteristics of nanoparticles. In fact, different types of nanoparticles have already been evaluated both as potential bactericides and as efficient drug delivery vehicles. In this work, the use of selenium nanoparticles has been evaluated to inhibit the growth of two types of mycobacteria: Mycobacterium smegmatis and Mycobacterium tuberculosis. The results showed that selenium nanoparticles are able to inhibit the growth of both types of mycobacteria by damaging their cell envelope integrity. These results open a new opportunity for the use of this type of nanoparticles as antimycobacterial agents by themselves, or for the development of novel nanosystems that combine the action of these nanoparticles with other drugs.

Item Type:Article
Additional Information:

RESEARCHER ID M-3378-2014 (María Vallet Regí)
ORCID 0000-0002-6104-4889 (María Vallet Regí)
RESEARCHER ID K-4773-2015 (Blanca González Ortiz)
ORCID 0000-0002-0493-6071 (Blanca González Ortiz)

Uncontrolled Keywords:Selenium nanoparticles, Mycobacterium tuberculosis, Antimycobacterial effect, Smegmatis, Cell wall damaging agents
Subjects:Sciences > Chemistry > Materials
Medical sciences > Pharmacy > Inorganic chemistry
ID Code:60309
Deposited On:11 May 2020 09:00
Last Modified:26 Nov 2020 11:55

Origin of downloads

Repository Staff Only: item control page