¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

The Formation of Barite and Celestite through the Replacement of Gypsum

Impacto

Downloads

Downloads per month over past year

Forjanes, Pablo and Astilleros García-Monge, José Manuel and Fernández Díaz, Lurdes (2020) The Formation of Barite and Celestite through the Replacement of Gypsum. Minerals, 10 (2). p. 189. ISSN 2075-163X

[thumbnail of The Formation of Barite and Celestite.pdf]
Preview
PDF
Creative Commons Attribution.

5MB

Official URL: https://www.mdpi.com/2075-163X/10/2/189



Abstract

Barite (BaSO4) and celestite (SrSO4) are the end-members of a nearly ideal solid solution. Most of the exploitable deposits of celestite occur associated with evaporitic sediments which consist of gypsum (CaSO4·2H2O) or anhydrite (CaSO4). Barite, despite having a broader geological distribution is rarely present in these deposits. In this work, we present an experimental study of the interaction between gypsum crystals and aqueous solutions that bear Sr or Ba. This interaction leads to the development of dissolution-crystallization reactions that result in the pseudomorphic replacement of the gypsum crystals by aggregates of celestite or barite, respectively. The monitoring of both replacement reactions shows that they take place at very different rates. Millimeter-sized gypsum crystals in contact with a 0.5 M SrCl2 solution are completely replaced by celestite aggregates in less than 1 day. In contrast, only a thin barite rim replaces gypsum after seven days of interaction of the latter with a 0.5 M BaCl2 solution. We interpret that this marked difference in the kinetics of the two replacement reactions relates the different orientational relationship that exists between the crystals of the two replacing phases and the gypsum substrate. This influence is further modulated by the specific crystal habit of each secondary phase. Thus, the formation of a thin oriented layer of platy barite crystals effectively armors the gypsum surface and prevents its interaction with the Ba-bearing solution, thereby strongly hindering the progress of the replacement reaction. In contrast, the random orientation of celestite crystals with respect to gypsum guarantees that a significant volume of porosity contained in the celestite layer is interconnected, facilitating the continuous communication between the gypsum surface and the fluid phase and guaranteeing the progress of the gypsum-by-celestite replacement.


Item Type:Article
Uncontrolled Keywords:gypsum, barite, celestite, dissolution-precipitation, mineral replacement
Subjects:Sciences > Geology > Mineralogy
ID Code:60339
Deposited On:05 May 2020 10:27
Last Modified:07 Apr 2021 10:03

Origin of downloads

Repository Staff Only: item control page