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We study the simplest SOð2Þ gauged Oð5Þ Skyrme model in 4þ 1 (flat) dimensions. In the gauge
decoupled limit, the model supports topologically stable solitons (Skyrmions) and after gauging, the static
energy of the solutions is bounded from below by a “baryon number.” The studied model features both
Maxwell and Maxwell–Chern-Simons dynamics. The considered configurations are subject to biazimuthal
symmetry in the R4 subspace resulting in a two dimensional subsystem, as well as subject to an enhanced
symmetry relating the two planes in the R4 subspace, which results in a one dimensional subsystem.
Numerical solutions are constructed in both cases. In the purely magnetic case, fully biazimuthal solutions
were given, while electrically charged and spinning solutions were constructed only in the radial (enhanced
symmetric) case, both in the presence of a Chern-Simons term, and in its absence. We find that, in contrast
with the analogous models in 2þ 1 dimensions, the presence of the Chern-Simons term in the model under
study here results only in quantitative effects.
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I. INTRODUCTION

The gauging of the Skyrmion, namely of the soliton of
the Oð4Þ sigma model on R3, is recognized to be of
physical relevance in the study of the electrically charged
nucleon. This was considered by Callan and Witten [1] in
the context of baryon number violation. Gauging a Skyrme
(sigma model) scalar results in the deformation of the lower
bound on the energy, which prior to gauging is the
topological charge, namely the winding number. The most
prominent such example is the Uð1Þ, or SOð2Þ, gauged
Skyrme system in 3þ 1 dimensions, the earliest work
being [1], where the emphasis was on baryon number
violation, and subsequently [2], where the dependence of
the mass of the proton on the electric charge was studied,
and [3], where the spin of the proton was considered. The
gauging prescription used in [2,3] coincides with that used
in [1].
These studies, [1–3], apply to the SOð2Þ gauged Oð4Þ

Skyrme system on R3. However, these models possess

generalizations for other dimensions of the background
geometry, solitons of the SOð2Þ gauged Oð3Þ Skyrme
system on R2 being constructed by Schoers [4]. The
simpler problem of gauging the planar Skyrmions [4] is
much more transparent, and has led to a proposal for the
SOðDÞ gauging of OðDþ 1Þ Skyrme system on RD,
in Ref. [5].
A lower bound on the energy of a gauged Skyrmion inD

dimensions persists also for SOðNÞ gauge groups with
2 ≤ N ≤ D, as e.g., in [1–3]. The prescription for con-
structing such lower bounds is systematically explained in
Appendix A of [6], where, in the specific case of the Oð5Þ
Skyrme model on R4 of interest here, only one pair of the
components of the 5-component Skyrme scalar are gauged.
This is unsatisfactory in the context of the problem at hand,
where it is desirable to gauge two pairs of the Skyrme scalar
with SOð2Þ, with the aim of imposing biazimuthal sym-
metry in R4. Such a gauging prescription together with the
corresponding topological charge density is constructed in
Appendix A of the present paper. There we start with the
density pertaining to the system gauged with the full SOð4Þ
group, which acts on four of the components of the
5-component Skyrme scalar, and then perform a group
contraction to SOð2Þ. Here, and in Refs. [5,6] the integral
of this lower bound is loosely described as a “topological
charge” in analogy with its Higgs analogue.
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Systematic and quantitative studies of SOð2Þ gauged
Skyrme systems in 2þ 1 dimensions were recently carried
out in [7–9]. There, the emphasis was on the effect of the
Chern-Simons dynamics, which is possible to define in all
odd spacetime dimensions.1 It was found that the presence
of the Chern-Simons term resulted in a nonstandard
relation between mass and charge/spin, seen in [7], and
in the dissipation of the baryon number, seen in [8,9]. Both
these effects are striking new results, and it is not
unreasonable to expect that they are not exclusive to this
low dimension only.
To carry out such a study in the physically most

interesting case of the Abelian gauged Skyrmion in 3þ
1 dimensions is technically a very substantial problem since
the definition of the relevant Chern-Simons density, pro-
posed in Ref. [6], involves a supplementary Oð6Þ Skyrme
scalar in addition to the Oð4Þ Skyrme scalar that describes
the nucleon. It is therefore reasonable to defer that inves-
tigation and proceed instead with the study of an Abelian
gaugedOð5Þ Skyrmion in 4þ 1 (odd) dimensions, where a
(usual) Chern-Simons density is defined. This is the remit
of the present work, which is a preliminary attempt at
inquiring whether the phenomena exposed in Refs. [7–9]
persist.
In 3þ 1 dimensions, irrespective of the absence of the

(usual) Chern-Simons density there is the additional tech-
nical complication that the largest symmetry that can be
applied to the Abelian field is axial symmetry, resulting in a
two-dimensional residual subsystem [2,3,8]. This is of
course the case in all higher even dimensional spacetimes,
which results in the necessity of tackling multidimensional
partial differential equations (PDEs) of the reduced sys-
tems. An advantage of 4þ 1 dimensions, i.e., static R4, is
that it is possible to impose an enhanced symmetry on the
system that renders the residual system one-dimensional,
depending only on the radial variable. The enhanced
symmetry in question is that which is imposed on the
bipolar (biazimuthal) symmetry in R4, and leads to a
simplified form of the equations which are solved in a
numerical approach.
In the present work we study solutions in both the purely

magnetic sector where the electric component of the
Abelian field vanishes, A0 ¼ 0, and also when A0 ≠ 0,
where electric charge and angular momentum are present.
In both sectors, we consider the symmetry enhanced
systems resulting in one dimensional ODEs. In the purely
magnetic sector, the fully biazimuthal solutions to two
dimensional PDEs are also constructed. In the A0 ≡ V ≠ 0
sector, where only radial solutions were considered, the
electric charge Qe was given by the asymptotic solutions
for V ¼ V0 þ Qe

4π2r2 þ � � �, in agreement with the solution of

the Laplace equation on R4. In this sense, our electrically
(and magnetically) charged solutions are analogues of the
Julia-Zee dyons [10] in 3þ 1 dimensions. This definition
of electric charge contrasts with that given by Paul and
Khare [11] for the Abelian gauged Maxwell–Chern-
Simons system interacting with a scalar in 2þ 1 dimen-
sions. While in the latter [11] the existence of electric
charge and spin depends on a nonvanishing Chern-Simons
(CS) density, here these are present independently of CS
dynamics as in the case of JZ dyons [10]. This is because
Qe in [11] is proportional to the first Pontryagin charge
(and the spin to the square of the Pontryagin charge) on
R2, while here the corresponding quantity is the second
Pontryagin charge on R4, for which not to vanish the
gauge group must be SUð2Þ and with the Abelian gauge
field at hand it vanishes. We plan to return to this question
elsewhere.
The paper is structured as follows. In Sec. II, we present

the model and subject the system to the symmetries
described above, and in Sec. III, we present the results
of the numerical analysis. In Sec. IV, we summarize our
results and point out to future developments. In addition,
we have supplied two Appendices. Appendix A defines the
“topological charge” supplying the lower bound of the
energy. Such a charge density is provided in [6], which is
not adequate for the present application since only two of
the five components of the Skyrme scalar are gauged in that
case. Here, we need to gauge two pairs of Skyrme scalars to
enable the imposition of the enhanced symmetry rendering
the biazimuthal system a radial one. (Appendix A in fact
stands on its own as a supplement to the corresponding
result in [6].) In Appendix B, we have established the
Belavin inequalities that give the Bogomol’nyi lower
bounds, a task which is appreciably more involved than
the corresponding one for the ungauged Oð5Þ model,
studied in [12].

A. Conventions

Throughout the paper, mid alphabet Greek indices,
μ; ν;…, label spacetime coordinates running from 1 to 5
(with x5 ¼ t). When referring to spacelike coordinates only
we will use mid alphabet Latin letters, i; j;…. Early Latin
letters, a; b;… label the internal indices of the scalar field
multiplet, running from 1 to 5, when primed a0; b0;… they
just refer to the first four internal indices 1, 2, 3, 4. Since we
will gauge the Skyrme scalar field by pairs of components,
we will indicate the pair (1,2) by early Greek letters,
α; β;…, while for the pair (3,4) we will employ early
capital Latin indices, A; B;…. As standard, we use
Einstein’s summation convention, but to alleviate notation,
no distinction is made between covariant and contravariant
internal indices.
The background of the theory is Minkowski spacetime,

where the spatial R4 is written in terms of bipolar spherical
coordinates,

1The prescription of constructing Chern-Simons densities for
gauged Skyrme systems in even spacetime dimensions is given in
[6], but to date its effect has not been quantitatively studied.
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ds2 ¼ dr2 þ r2dΩ2
3 − dt2; ð1Þ

where r, t are the radial and time coordinates respectively,
while dΩ2

3 is the metric of the three sphere, with

dΩ2
3 ¼ dθ2 þ sin2 θdφ2

1 þ cos2 θdφ2
2; ð2Þ

where 0 ≤ θ ≤ π=2 and 0 ≤ φ1;2 < 2π.
In addition to using the coordinates ðr; θÞ, we will find it

convenient to employ instead

ρ ¼ r sin θ; σ ¼ r cos θ; ð3Þ

(with 0 ≤ σ, ρ < ∞) in some expressions, such that (1)
becomes

ds2 ¼ dρ2 þ ρ2dφ2
1 þ dσ2 þ σ2dφ2

2 − dt2: ð4Þ

II. THE MODEL

A. Gauging prescription and the action

In 4þ 1 spacetime dimensions, the Skyrme model is
described by the real scalar field ϕa ¼ ðϕα;ϕA;ϕ5Þ,
α ¼ 1; 2; A ¼ 3, 4, subject to the sigma model constraint

jϕaj2 ¼ ðϕαÞ2 þ ðϕAÞ2 þ ðϕ5Þ2 ¼ 1: ð5Þ

The gauging prescription [5,6] for a OðDþ 1Þ Skyrme
scalar inDþ 1 spacetime involves gauging only the firstD
components, ϕa, a ¼ 1;…; D. Thus in the present case in
4þ 1 dimensions, only the first four components ϕa,
a ¼ 1, 2, 3, 4 are gauged. The gauging prescription in
the present case is stated by the definition of the covariant
derivatives

ϕα
μ ¼ Dμϕ

α ¼ ∂μϕ
α þ AμðεϕÞα; ð6Þ

ϕA
μ ¼ Dμϕ

A ¼ ∂μϕ
A þ AμðεϕÞA; ð7Þ

ϕ5
μ ¼ Dμϕ

5 ¼ ∂μϕ
5; ð8Þ

with α ¼ 1, 2; A ¼ 3, 4. Here ε denotes the Levi-Civita
symbol in each of the two-dimensional subsets of internal
indices, (1,2) and (3,4), respectively. More specifically,
ðεϕÞ1 ¼ ϕ2, ðεϕÞ2 ¼ −ϕ1 and similar for indices (3,4).
In what follows, we shall use the abbreviated notation

ϕ
a1a2…ap
μ1μ2…μp ðpÞ ¼ ϕa1

μ1 ∧ ϕa2
μ2… ∧ ϕ

ap
μp ;

for the p-fold antisymmetrized products of the 1-form ϕa
μ

defined by (6)–(8). The squares of these quantities describe
the Skyrme kinetic terms, which in this case are allowed for
p ¼ 1, 2, 3, 4. Here, we restrict our attention to the

quadratic, quartic and sextic terms with p ¼ 1, 2, 3, and
eschew the octic term with p ¼ 4.
We will use the further abbreviated notation

Φ2 ≡ ϕa
μ1ϕ

a
μ2g

μ1μ2 ;

Φ4 ≡ ϕab
μ1ν1ϕ

ab
μ2ν2g

μ1μ2gν1ν2 ;

Φ6 ≡ ϕabc
μ1ν1λ1

ϕabc
μ2ν2λ2

gμ1μ2gν1ν2gλ1λ2 ; ð9Þ

where gμν are contravariant to the metric tensor gμν of the
five dimensional background geometry. Thus, ϕμ

a ¼ ϕa
νgμν,

ϕμν
ab ¼ ϕab

ρσgμρgνσ , etc.. Note that a; b;… are the global
Oð5Þ indices for which we do not distinguish upper and
lower, for typographical convenience.
We consider the following action

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
λ1
2
Φ2 þ λ2

4
Φ4 þ λ3

36
Φ6 þ λ0Uðϕ5Þ

þ 1

4
λMFμνFμν þ κffiffiffiffiffiffi−gp εμνρσλAλFμνFρσ

�
; ð10Þ

which apart from the above quantities features the
(standard) Maxwell and Chern-Simons terms, and a
Skyrme potential U. Thus Fμν is the Maxwell field
Fμν ¼ ∂μAν − ∂νAμ, Aμ being the gauge connection. Our
choice for the Skyrme potential is

U ¼ 1 − ϕ5; ð11Þ
which is the analogue of the “pion mass potential,” often
used in the three dimensional and planar Skyrme models.
ðλ0; λ1; λ2; λ3; λMÞ ≥ 0 are coupling constants. We shall
also define

λM ¼ 1

g2
; ð12Þ

with g the gauge coupling constant, such that the gauge
decoupling limit in [12] is approached for g ¼ 0.
Again, to accommodate the eventual formulation in

curved coordinates, we replace all partial derivatives ∂μ

in (6)–(8) formally by∇μ. Varying the Lagrangian (10) with
respect to the scalars ϕa leads to the Euler-Lagrange
equations

ðδda − ϕdϕaÞ
�
2λ1Dμϕa

μ þ 8λ2ϕ
ν
bD

μϕab
μν þ 9λ3ϕ

νλ
bcD

μϕabc
μνλ

þ λ0
∂U
∂ϕa

�
¼ 0; ð13Þ

while the corresponding equations for the Maxwell field are

λM∇νFνμ ¼ Jμ þ κεμνρσλFνρFσλ; ð14Þ
where Jμ ¼ Jμ½ϕðpÞ� is the Skyrme current arising from the
variation with respect to the Maxwell potential.
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Variation of (10) with respect to the metric tensor gμν
leads to the energy-momentum tensor of the model

Tμν ¼ λMT
ðMÞ
μν þ λ0T

ð0Þ
μν þ λ1T

ð1Þ
μν þ λ2T

ð2Þ
μν þ λ3T

ð3Þ
μν ; ð15Þ

in terms of the contributions of the distinct terms in (10),
which read

TðMÞ
μν ¼ FμρFνσgρσ −

1

4
gμνFρσFρσ;

Tð0Þ
μν ¼ −gμνUðϕ5Þ;

Tð1Þ
μν ¼ ϕa

μϕ
a
ν −

1

2
gμνΦ2;

Tð2Þ
μν ¼ ϕab

μρϕ
ab
νσgρσ −

1

4
gρσΦ4;

Tð3Þ
μν ¼ 1

6

�
ϕabc
μρτ ϕ

abc
νσλg

ρσgτλ −
1

6
gμνΦ6

�
: ð16Þ

As usual, the tt component of the mixed energy-
momentum tensor, Tt

t, (taken with minus sign) corre-
sponds to the local mass-energy density, while the angular
momentum densities in the ðx1; x2Þ and ðx3; x4Þ planes are
given by the tφ1 and tφ2 components, Tt

φ1
and Tt

φ2
,

respectively.

B. The Ansatz and boundary conditions

1. The general case

We consider a U(1) Ansatz in terms of three potentials,
two magnetic a1;2ðr; θÞ, and one electric, Vðr; θÞ, with

A ¼ a1ðr; θÞdφ1 þ a2ðr; θÞdφ2 þ Vðr; θÞdt; ð17Þ

and the following expression of the scalars

ϕ1 ¼ Ψ1ðr; θÞ cosðn1φ1 − ωtÞ; ϕ2 ¼ Ψ1ðr; θÞ sinðn1φ1 − ωtÞ;
ϕ3 ¼ Ψ2ðr; θÞ cosðn2φ2 − ωtÞ; ϕ4 ¼ Ψ2ðr; θÞ sinðn2φ2 − ωtÞ;
ϕ5 ¼ Ψ3ðr; θÞ; ð18Þ

with n1, n2 two positive integers (the winding numbers) and ω ≥ 0 the field frequency. Also, the functions Ψ1, Ψ2, Ψ3 are
subject to the constraint (5)

Ψ2
1 þ Ψ2

2 þ Ψ2
3 ¼ 1: ð19Þ

In this approach, the problem reduces to solving a set of six PDEs with dependence on only two coordinates. As usual,
these equations result by varying (10) with respect to the functionsΨ1,Ψ2,Ψ3 and a1, a2, V, respectively. Before stating the
boundary conditions, we display the expression of several terms which enter the action S (10), subject to the general
Ansätze (17)–(18).

1

2
FμνFμν ¼ 1

r2

�
1

sin2θ

�
a21;r þ

1

r2
a21;θ

�
þ 1

cos2θ

�
a22;r þ

1

r2
a22;θ

�
−
�
V2
;r þ

1

r2
V2
;θ

��
; ð20Þ

εμνρσλAλFμνFρσ ¼
8

sin θ cos θ
½ða1a2;θ − a2a1;θÞV;r þ ða2a1;r − a1a2;rÞV;θ þ ða2;ra1;θ − a1;ra2;θÞV�; ð21Þ

and

Φ2 ≡ ϕa
i1
ϕa
i2
gi1i2 ¼ Ψ2

1;r þΨ2
2;r þ Ψ2

3;r þ
1

r2
ðΨ2

1;θ þΨ2
2;θ þ Ψ2

3;θÞ

þ 1

r2

��ðn1 − a1Þ2
sin2θ

þ a22
cos2θ

�
Ψ2

1 þ
�ðn2 − a2Þ2

cos2θ
þ a21
sin2θ

�
Ψ2

2

�
− ðΨ2

1 þ Ψ2
2Þðωþ VÞ2; ð22Þ

while the expressions of Φ4 and Φ6 are too complicated to include here.
The boundary conditions satisfied by the functions Ψ1, Ψ2, Ψ3 are

Ψ1jr¼0 ¼ −1; Ψ2jr¼0 ¼ 0; Ψ3jr¼0 ¼ −1; Ψ1jr¼∞ ¼ 0; Ψ2jr¼∞ ¼ 0; Ψ3jr¼∞ ¼ 1;

Ψ1jθ¼0 ¼ ∂θΨ2jθ¼0 ¼ ∂θΨ3jθ¼0 ¼ 0; ∂θΨ1jθ¼π=2 ¼ Ψ2jθ¼π=2 ¼ ∂θΨ3jθ¼π=2 ¼ 0; ð23Þ
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while for the gauge potentials we impose

a1jr¼0 ¼ a2jr¼0 ¼ 0; V;rjr¼0 ¼ 0; a1jr¼∞ ¼ a2jr¼∞ ¼ 0; Vjr¼∞ ¼ V0;

a1jθ¼0 ¼ ∂θa2jθ¼0 ¼ 0; ∂θa1jθ¼π=2 ¼ a2jθ¼π=2 ¼ 0; ∂θVjθ¼0;π=2 ¼ 0: ð24Þ

These boundary conditions are compatible with an approxi-
mate form of the solutions on the boundaries of the domain
of integration, together with some physical requirements
(e.g., regularity and finiteness of global charges). Another
criteria here (and an important guideline in selecting among
possible sets of boundary conditions) is the compatibility
with the spherically symmetric ungauged limit in [12],
together with the radially enhanced limit in Section II 2 2.
For example, Eqs. (29) and (30) in Section II 2 2 imply that
the functions Ψ1 and a1 vanish at θ ¼ 0, while Ψ2, Ψ3, a2
and V should satisfy Newman boundary conditions. Then
one assumes the existence of a generic small θ-expansion
of the form U ¼ P

k≥0 ukðrÞθk (with U ¼ fΨ1;Ψ2;
Ψ3; a1; a2; Vg) which is plugged into the field equations.
(Note that the coefficients u0ðrÞ vanish forΨ1 and a1, while
u1ðrÞ is zero for the remaining functions). A similar
approach is implemented for θ ¼ π=2 and at the limits
of the r-interval.
As usual the total mass-energy, M, and angular

momenta, J1;2, of a solution are defined as

M ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
Tt

t; J1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tt

φ1
;

J2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tt

φ2
; ð25Þ

while the electric charge Qe is computed from the electric
flux at infinity,

Qe ¼
I
∞
dSrtFrt; ð26Þ

and thus can also be evaluated from the asymptotics of the
electric potential

V ¼ V0 þ
Qe

4π2r2
þ…; ð27Þ

with V0 a constant. However, by using the field equations,
the volume integral in the expression (25) of J1;2 can be
converted into surface integrals at infinity in terms of
Maxwell potentials, and one finds2

J1 ¼
1

2
λMn1Qe; J2 ¼

1

2
λMn2Qe: ð28Þ

2. n1 =n2 = 1: a symmetry enhanced Ansatz

Remarkably, it turns out that the choice

Ψ1 ¼ sinψðrÞ sin θ; Ψ2 ¼ sinψðrÞ cos θ;
Ψ3 ¼ cosψðrÞ; ð29Þ

a1ðr; θÞ ¼ aφðrÞsin2θ; a2ðr; θÞ ¼ aφðrÞcos2θ;
Vðr; θÞ ¼ VðrÞ; ð30Þ

provides a consistent factorization of the angular depend-
ence for the general model, provided that3

n1 ¼ n2 ¼ 1: ð31Þ

This restrictive Ansatz greatly reduces the complexity of
the system and simplifies the numerical construction of the
lowest topological charge solutions, which are found in this
case by solving a set of three ordinary differential equations
(ODEs). For example, with the above Ansatz, the effective
action of the model reads

Leff ¼ r3
�
λM
2r2

�
a0φ2 þ

4a2φ
r2

− r2V 02
�
þ 16κ

r3
ðVa0φ − aφV 0Þaφ

þ λ1
2

�
ψ 02 þ sin2ψ

r2
ð2þ ð1 − aφÞ2 − r2ðωþ VÞ2Þ

�

þ λ2
sin2ψ
r2

�
ψ 02ð2þ ð1 − aφÞ2 − r2ðωþ VÞ2Þ þ sin2ψ

r2
ð1þ 2ðð1 − aφÞ2 − r2ðωþ VÞ2ÞÞ

�

þ λ3
sin4ψ
r4

�
ψ 02ð1þ 2ð1 − aφÞ2 − 2r2ðωþ VÞ2Þ þ sin2ψ

r2
ðð1 − aφÞ2 − r2ðωþ VÞ2Þ

�
þ λ0ð1 − cosψÞ

�
; ð32Þ

2Note, however, that the corresponding densities are not equal.
3This is similar to the factorization of the θ-dependence on the S3-sphere employed in the scalar field Ansätze in [13,14].
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the contribution of various terms being transparent. The boundary conditions satisfied by the functions fψðrÞ, aφðrÞ, VðrÞg
results directly from (23)–(24). Also, in this case it is possible to compute an approximate form of the solutions at the limits
for the domain of integration. For example, one finds the following small-r expression

aφðrÞ ¼ m2r2 þm4r4 þOðr6Þ; ψðrÞ ¼ π þ f1rþOðr3Þ; VðrÞ ¼ v0 þ v4r4 þOðr5Þ; ð33Þ

which contains three essential parameters f1, m2 and v0, while

m4 ¼
96κ2m3

2

λ2M
−
f21ðλ1 þ 6f21ðλ2 þ f21λ3ÞÞ

12λM
;

v4 ¼
f21ðv0 þ ωÞ

24λM
ðλ1 þ 6f21ðλ2 þ f21λ3ÞÞ þ

κm2

λ3M
½−1152κ2m3

2 þ f21λMðλ1 þ 6f21ðλ2 þ f21λ3ÞÞ�: ð34Þ

The leading order terms in the large-−r expansion of the solutions are

aφðrÞ ¼
m̄2

r2
þ…; ψðrÞ ¼ c

ffiffiffi
π

2

r
e
−r

ffiffiffi
λ0
λ1

q

r3=2
þ…; V ¼ V0 þ

Qe

4π2r2
þ…; ð35Þ

with m̄2 Qe, V0 and c some constants which are determined by numerics.
The corresponding expressions of the mass-energy and angular momenta densities are also of interest, with4

−Tt
t ¼

λM
2r2

�
a02φ þ 4a2φ

r2
þ r2V 02

�
þ λ1

2

�
ψ 02 þ sin2ψ

r2
ð2þ ð1 − aφÞ2 þ r2V2Þ

�

þ λ2
sin2ψ
r2

�
ψ 02ð2þ ð1 − aφÞ2 þ r2V2Þ þ sin2ψ

r2
ð1þ 2ðð1 − aφÞ2 þ r2V2ÞÞ

�

þ λ3
sin4ψ
r4

�
ψ 02ð1þ 2ð1 − aφÞ2 þ 2r2V2Þ þ sin2ψ

r2
ðð1 − aφÞ2 þ r2V2Þ

�
þ λ0ð1 − cosψÞ; ð36Þ

Tt
φ1

sin2θ
¼ Tt

φ2

cos2θ
¼ −λMa0φV 0 þ sin2ψð1 − aφÞV

�
λ1 þ 2λ2

�
ψ 02 þ 2sin2ψ

r2

�
þ 4λ3

sin2ψ
r2

�
ψ 02 þ sin2ψ

2r2

��
: ð37Þ

Then, by using the Maxwell equations, one can easily show that

ffiffiffiffiffiffi
−g

p
Tt

φ1
¼ sin3θ cos θS0;

ffiffiffiffiffiffi
−g

p
Tt

φ2
¼ cos3θ sin θS0; with S ¼ λMð1 − aφÞr3V 0 þ 8κa2φð3 − 2aφÞ; ð38Þ

which makes manifest the total derivative structure of Tt
φi
.

Also, one observes that despite entering the angular
momenta density, the integral contribution of the CS term
vanishes, since aφ → 0 as r → 0 and as r → ∞.

C. Scaling symmetry and numerical approach

The model (10) contains four input parameters λi
together with the gauge coupling constant g (we recall
λM ¼ 1=g2). However, the constant multiplying the
quadratic term can be taken as an overall factor for the
Skyrme action. Also, the equations are invariant under
the transformation

r → τr; λ0=λ1 → τ2λ0=λ1; λ2=λ1 → λ2=ðτ2λ1Þ;
λ3=λ1 → λ3=ðτ4λ1Þ; ð39Þ

(with τ some arbitrary positive parameter), which was used
to set λ3 ¼ 1.
Then the problem still contains three free constants λ0, λ2

and λM. In this work, in order to simplify the picture, we
have chosen to solve a model without the quartic term, i.e.,
we set

λ1 ¼ λ3 ¼ 1; λ2 ¼ 0; ð40Þ

such that the only input parameters are λ0 and the gauge
coupling constant g (i.e., the coefficient λM of the Maxwell
term in the action (10)). The choice (40) will used for all the
numerical solutions presented in this paper.

4Note that these expressions are given in gauge with ω ¼ 0,
which was employed in numerics.
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Starting with the case of solutions within the general
Ansatz (17)–(18), the constraint (19) is imposed by using
the Lagrange multiplier method, as explained e.g., in
[15,16]. The numerical calculations were performed by
using the professional software based on the Newton-
Raphson method CADSOL [17]. The field equations are
first discretized on a nonequidistant grid and the resulting
system is solved iteratively until convergence is achieved.
In this scheme, a new radial variable x ¼ r=ð1þ rÞ is
introduced which maps the semi-infinite region ½0;∞Þ to
the closed region [0, 1]. Also, this software package
provides error estimates for each unknown function, which

allows judging the quality of the computed solution. The
numerical error for the solutions reported in this work is
estimated to be typically < 10−4.
The solutions within the symmetry enhanced Ansatz

(29)–(30) were found by using the professional software
package COLSYS [18] (although some of them were also
computed by using the same approach as in the general
case). This solver employs a collocation method for
boundary-value ODEs and a damped Newton method of
quasi-linearization. At each iteration step a linearized
problem is solved by using a spline collocation at
Gaussian points. In this approach, the linearized problem
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FIG. 1. The scalar functions Ψ1, Ψ2, Ψ3 and the gauge potentials a1, a2 which enter the Ansatz (17)–(18) are shown together with the
mass-energy density ρE ¼ −Tt

t for a solution with n1 ¼ 1, n2 ¼ 2.
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is solved on a sequence of meshes until the successful
stopping criterion is reached, a compactified radial variable
x ¼ r=ð1þ rÞ being again employed.

III. NUMERICAL RESULTS

A. Purely magnetic, static solutions

These configurations (characterized by κ ¼ 0) have
V ¼ 0, and their angular momenta and electric charge
density vanish identically. As an illustrative example for the
general case, we show in Fig. 1 the profiles of a typical
solution with n1 ¼ 1, n2 ¼ 2 and λM ¼ 1=25, λ0 ¼ 0. One
can see that the gauge and scalar functions (except Ψ3) as
well as the energy density depend strongly on θ.
For completeness, in Fig. 2 we give a similar plot for the

special case n1 ¼ n2 ¼ 1 [note however that, here we show
the functions ψ and aφ which enter the simplified Ansatz
(29)–(30)].

The dependence of the solutions on the gauge coupling
constant g is shown in Fig. 3 for the lowest values of the
pair ðn1; n2Þ. One can notice the existence of some
universal behaviour there, the total mass of the solutions
decreasing with λM ¼ 1=g2. The mass is maximized by the
g ¼ 0 configurations, a limit which corresponds to the
ungauged O(5) sigma model, whose solutions were dis-
cussed in [12] (albeit for the special case n1 ¼ n2 ¼ 1
only). A curious result there is that, for the same other input
parameters, the n1 ¼ n2 ¼ 2 solutions have a larger mass
than the n1 ¼ 1, n2 ¼ 3 configurations.
Although the results there were found for solutions

without a potential, the same behavior is found for
λ0 ≠ 0, as shown in the inset of Fig. 3. Moreover, as
expected, the mass of the solutions always increases with
the parameter λ0. Also, one remarks that the generic
properties of the static solutions appear to be the same
for any choice of the integers n1, n2.
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FIG. 2. The scalar function ψ and the gauge potential aφ which
enter the simplified Ansatz (29)-(30) are shown together with the
mass-energy density ρE ¼ −Tt

t for a solution with n1 ¼ n2 ¼ 1.
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FIG. 3. The mass of the SOð2Þ gauged Skyrmions is shown as a
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B. Electrically charged, spinning solutions

The only rotating solutions considered in this work were
found for the enhanced symmetry Ansatz5 (29)–(30), which
means they have

J1 ¼ J2 ¼ J ¼ 1

2
λMQe: ð41Þ

Also, we use the residual gauge symmetry of the model
V → V − ω to set ω ¼ 0 in the numerical approach. Then,
for spinning solutions the constant V0, which fixes the
asymptotic value of the electric potential, is the only extra-
input parameter as compared to the purely static case.
The profile of two typical solutions without a CS term

(κ ¼ 0, left panel) and with a CS term (κ ¼ 1, right panel)
are shown in Fig. 4. Note that while all other input
parameters are kept constant there (in particular the
asymptotic value of the electric potential V0), the presence
of a CS term leads to a rather different shape of the gauge
potentials aφðrÞ and VðrÞ. Also, in the κ ¼ 0 case (no CS
term), the profiles of aφðrÞ, ψðrÞ are not very different as
compared to the static limit, Fig. 2.
Our numerical results indicate that any static configu-

ration appears to possess rotating generalizations. As we
increase V0 from zero while keeping fixed other input
parameters, a branch of solutions forms. Along this branch,
the total mass-energy M increases monotonically with V0.
The dependence of mass-energyM and angular momentum
J on the value of the electric potential at infinity V0 is
shown in Fig. 5 for several values of the CS coupling
constant κ. As one can see, the symmetry

V0 → −V0; M → M; J → −J; ð42Þ

exists for solutions without a Chern-Simons term, κ ¼ 0,
only. Also, no upper bound appears to exist for the value
of jκj, both the mass-energy and angular momenta increas-
ing proportionally with jκj. Moreover, for κ ¼ 0, the
solutions with V0 ¼ 0 have no electric field and correspond
to static configurations discussed in Sec. III A. However,
as expected, the angular momentum does not vanish for
solutions with a CS term which have an electric potential
which vanishes asymptotically, V0 ¼ 0. However, in all
cases the minimal value of M is approached for V0 ¼ 0.
Finally, let us remark on the existence of a special set of
solutions with J ¼ Qe ¼ 0, which, for κ ≠ 0 still possess a
nonvanishing angular momentum/electric charge density.

IV. SUMMARY AND OUTLOOK

In this work, we have formulated the SOð2Þ gauged
Oð5Þ Skyrme model in 4þ 1 dimensions. This is the
gauged analogue of a previous work in Ref. [12], where
the gravitating system was studied, while here we consider
the Maxwell dynamics instead of gravity. The present work
is a preliminary step toward a comprehensive investigation
of the properties of solitons of Uð1Þ gauged Skyrmions, in
principle in all dimensions but most importantly in 3þ 1.
Here we start with 4þ 1 dimensions since this is the
simplest next case to 2þ 1 dimensions, like which 4þ 1 is
an odd dimension. Our ultimate aim is (a) studying the
charge-mass and spin-mass dependences, and (b) tracking
the evolution of values of the effective baryon charge. The
“effective baryon charge” in question is given by the lower
bound on the energy of the gauged static soliton. The
solutions we seek include those supporting the global
charges: electric charge and angular momentum.
We are motivated by a number of unexpected results that

we have obtained in the study of an analogous model in
2þ 1 dimensions, namely the Uð1Þ gauged planar Skyrme
system, in which case the presence of electric charge and
spin is contingent on the presence of the Chern-Simons
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FIG. 5. The total mass-energy M (left panel) and the angular momenta J1 ¼ J2 ¼ J (right panel) are shown as functions of the
asymptotic value of the electric potential V0 for several values of the Chern-Simons coupling constant κ for solutions
with n1 ¼ n2 ¼ n ¼ 1.

5Note that the results obtained in the static limit, Sec. III A,
strongly suggests that this limit contains already all basic features
of the general case.
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term in the Lagrangian. Specifically, we found that in 2þ 1
dimensions (a) charge-mass and spin-mass curves are not
monotonically increasing as usual but rather can also
decrease in some areas of the parameter space (see
Sec. 4 of Ref. [7]), and (b) that in the given model solitons
characterized with continuous values of the baryon charge
can exist (see Refs. [8,9]).
One may expect that some of the properties observed in

[7–9] can be reproduced in the case of charged Skyrmions in
3þ 1 dimensions. But in the absence of a Chern-Simons
term in 3þ 1 dimensions, this does not turn out to be the
case, as shown in our work of Refs. [2,3]. While it is possible
to employ a “new” Uð1Þ Chern-Simons density proposed in
[6], where it is called a Skyrme–Chern-Simons density, this
would involve the interaction with anOð6Þ Skyrme scalar in
addition to the Oð4Þ Skyrme scalar that supports the soliton.
This complication, along with the necessity to tackle a two-
dimensional PDEs problem, is one reason we defer that
3þ 1 dimensional problem and proceed in the present work
to the study of the Uð1Þ gauged Oð5Þ model in 4þ 1
dimensions. Moreover, it is convenient that in 4þ 1 dimen-
sions the “usual” Chern-Simons term is available.
The main results of this work can be summarized as

follows. First, we have established the existence of SOð2Þ
gauged generalizations of Oð5Þ Skyrme model introduced
in Ref. [12]. (Note that here the solutions were found for a
fixed Minkowski spacetime, the gravity effects being
ignored.) Both static and spinning configurations were
studied, subject to a specific Ansatz which reduces the
problem to solving a set of PDEs. Moreover, the Ansatz
allows for an “enhanced symmetry” limit that renders the
residual system one-dimensional, depending on the radial
variable only. The static purely magnetic solutions were
studied for both the general Ansatz and the enhanced
symmetry Ansatz. It turns out that the numerical results
show that the basic qualitative features are rather similar in
both cases, as shown, e.g., in Fig. 3; for example, the mass
of the solutions always decreases monotonically as the
gauge coupling constant increases. In the spinning case,
only enhanced symmetry configurations were studied,
solutions with and without a Chern-Simons (CS) term
being considered. Our numerical results indicate that,
different from the case of charged Skyrmions in 2þ 1
dimensions, the presence of a CS term in the Lagrangian of
the present model leads only to some quantitative features,
the unusual features unveiled in Refs. [7–9], being not
recovered in our study. For example, while in 2þ 1
dimensions the electric charge and spin were not supported
by the Skyrmion when the CS term was absent, here the
situation is more like as for gauged Skyrmions in 3þ 1
dimensions [2,3] or like in the case of JZ-dyons [10] where
electric charge (but not spin) is present despite the absence
of a CS term. Also, the mass of the solutions and angular
momentum always possess a monotonic dependence on the
asymptotic value of the electric potential, see Fig. 5.

To summarize, we conclude that the presence of the CS
term has only a quantitative effect on the 4þ 1 dimensional
model proposed in this paper. This strongly contrasts with
the 2þ 1 dimensional case in [7–9], where it had the
qualitative effect of featuring “nonstandard” mass-charge
and mass-spin dependences, and, moreover, changing
“baryon number” inside a given theory. The salient differ-
ence between the Julia-Zee (JZ) type of dyons [2,3,10]
studied here, and the Paul-Khare (PK) type dyons [11] is
that the former exist with or without the presence of Chern-
Simons dynamics, while the existence of the latter (PK)
type is predicated on the presence of Chern-Simons
dynamics in which case the Chern-Pontryagin (CP) index
(in the spatial subspace) determines the electric charge (and
spin) quantitatively. Given that in the model studied here
the only gauge field is Abelian, the corresponding CP
charge vanishes. Technically, in the case of PK dyons the
presence of the CS term in the Lagrangian leads to
solutions where the electric function VðrÞ can take on a
continue range of values, in contrast with the JZ type here.
It is this property of the solutions which gives rise to the
unusual mass-electric charge/spin relation and the variable
“baryon charge” seen in [7–9].
To recover these properties the model at hand needs to be

extended, and for this there are two distinct possibilities
available:

(i) To extend the model to feature an SUð2Þ ∼ SO�ð4Þ
field, such that the volume integral of the second
Chern-Pontryagin (CP) term in the Gauss law
equation [resulting from the Maxwell equation (14)],
which yields the electric chargeQe, does not vanish,
as it does in the solelyUð1Þ gauged model here. This
would cause the value of Qe to depend on the CS
coupling κ, unlike here. This done, the electric
charge would still get contributions even when
κ ¼ 0. To change this, namely to cause Qe to be
entirely dependent on κ for its support, it would be
necessary to replace F2

μν, the kinetic term of the
gauge field, with F2

μνρσ . Such a model is under active
consideration now.

(ii) An alternative extension of the model is motivated
by our study of the SUð3Þ and SOð5Þ gauged Higgs
(YMH) model with algebra-valued Higgs field
[19,20] in 3þ 1 dimensions, augmented with a
Higgs–Chern-Simons (HCS) term [21,22]. Those
models, where a new Chern-Simons density (the
HCS) is present, both electric charge and spin are
supported. Most importantly, they feature “non-
standard” mass-charge and mass-spin dependencies
in [7]. In those models, this effect has been enabled
by the larger [than SUð2Þ] gauge group. This may
signal the possibility that in the present case where
the scalar matter is a Skyrme rather than a Higgs
scalar, incorporating a larger target space sigma
model may be useful. In this direction, it is natural
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to augment the Abelian gauged Oð5Þ sigma model
with a Skyrme–Chern-Simons [6] density which is
defined by the supplementary Oð7Þ Skyrme scalar.
Compared to the above described possibility,
this alternative is a technically more challenging
problem.
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APPENDIX A: “TOPOLOGICAL CHARGE” OF
SOð2Þ GAUGED Oð5Þ MODEL ON R4

What we refer to as the “topological charge” density of a
gauged Skyrme (sigma model) system is the density that
results from the deformation of the topological charge
density of the sigma model, prior to gauging. While the
topological charge of the latter presents a lower bound on
the energy of the ungauged sigma model, the latter presents
the energy lower bound for the gauged system. As such, it
is not strictly speaking a topological charge, as is the case
for gauged Higgs systems.
The lower bound on the energy of a given sigma model

in the appropriate dimensions is given by a topological [23]
charge density. Such charge densities are not explicitly total
divergence, in contrast to the case of Higgs models [21],
but when the sigma model scalar is expressed in a para-
metrization that is compliant with the sigma model con-
straint, they become explicitly total divergence. We refer to
the charge densities in the generic parametrization as
essentially total divergence. In the context of the present
work, the sigma models in question are the OðDþ 1Þ
Skyrme models on RD.
When it comes to gauging Skyrme models, the situation

strictly differs from the (gauged6) Higgs models [21],
where the charge densities supplying the lower bounds

on the energy densities are all descended from Chern-
Pontryagin densities in some higher dimension, and are
topological densities. The gauge group of a Higgs model is
fixed by the representation of the Higgs scalar, in which the
topological charge is encoded [24,25]. Gauging a Skyrme
model with the requirement that a charge density giving a
lower bound on the energy density be defined, contrasts
starkly with the definition of the corresponding density of a
Higgs model. The physical requirements that the charge
density of a gauged Skyrmion must satisfy (a) that it be
(essentially) total divergence to enable the evaluation of
the charge integral as a surface integral in terms of the
asymptotic fields, and, (b) that it be gauge invariant. A
prescription for achieving such a definition was given
in [5].
The definition of the topological charge density of an

SOðNÞ gauged Skyrme scalar ϕa ¼ ðϕa;ϕDþ1Þ, a ¼ 1;
2;…; D on RD given in [5,6] relies on the relation between
the winding number density ϱ0, prior to gauging, which is
effectively total divergence but is gauge variant, and the
density ϱG defined by replacing all the partial derivatives in
ϱ0 by covariant derivatives. While ϱ0 is effectively total
divergence and is gauge variant, ϱG is gauge invariant but
is not total divergence. The physical charge density must be
both gauge invariant and total divergence. The definition
of ϱG follows from that of ϱ0, by formally replacing all
partial derivatives by the SOðNÞ covariant derivatives.
The generic expression

ϱ ¼ ϱ0 þ ∂iΩi½A;ϕ� ðA1Þ

¼ ϱG þW½F ;Dϕ�; ðA2Þ

defines the topological charge density where Ωi½A;ϕ�, like
ϱ0, is gauge variant while W½F ;Dϕ�, like ϱG is gauge-
invariant. (A1) and (A2) are equivalent definitions for ϱ,
which as required is both gauge invariant and total
divergence.
Clearly, the definition (A1)–(A2) depends on the gaug-

ing prescription employed and here, in contrast with Higgs
models, the gauge group can be chosen to be SOðNÞ, for all
N in the range D ≥ N ≥ 2. Thus, at most D components of
the Dþ 1 component Skyrme scalar are gauged with
SOðDÞ, down to only two of the components with
(Abelian) SOð2Þ. For example in [2,3], the Oð4Þ Skyrme
system on R3 is gauged with SOð2Þ, while in [26] this
system is gauged with SOð3Þ. Numerous such examples are
presented in [6], for models on RD, D ¼ 2, 3, 4, 5.
In the present work, we are concerned with the Oð5Þ

model onR4, with the Abelian gauging prescription (6), (7)
and (8), i.e., gauging two pairs of Skyrme scalars, in
contrast to the example given in [6] where only one pair is
gauged. Our choice for gauging two pairs here is driven by
our desire of having a gauging prescription that is sym-
metric in a ¼ 1, 2 and a ¼ 3, 4 that enables the enhanced

6The gauge decoupled Higgs models, referred to as Goldstone
models in [21], do support topologically stable solitons.
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radial symmetry of the biazimuthal symmetry. For this
reason it is convenient to start with the maximal SOð4Þ
gauging and proceeding to the desired subgauging pre-
scriptions by group contraction. We describe these two
steps in the next two subsections.

1. Topological charge of SOð4Þ gauged Oð5Þ
Skyrme system

We denote the Oð5Þ Skyrme scalar ϕa, a ¼ a0; 5, a0 ¼
1; 2; 3; 4 and the densities ϱ0 and ϱG appearing in (A1)–
(A2) are

ϱ0 ¼ εijklε
abcde∂iϕ

a∂jϕ
b∂kϕ

c∂lϕ
dϕe; ðA3Þ

ϱG ¼ εijklε
abcdeDiϕ

aDjϕ
bDkϕ

cDlϕ
dϕe; ðA4Þ

where calligraphic D and A are used to denote the SOð4Þ
gauged covariant derivative and connections. This is to
distinguish these quantities from D and A of the SOð2Þ
gauging in the main body of the work. Thus the SOð4Þ
connection and curvature are expressed by ðAa0b0

i ;F a0b0
ij Þ,

and the gauging prescription by the covariant derivative

Diϕ
a0 ¼ ∂iϕ

a0 þAiϕ
a0 ; Diϕ

5 ¼ ∂iϕ
5;

where Aiϕ
a0 ¼ Aa0b0

i ϕb0 and i ¼ 1, 2, 3, 4.
The quantities Ωi½A;ϕ�, W½F ;Dϕ� in (A1)–(A2) are

given in [5,6] to be

Ωi ¼ 3!εijklε
a0b0c0d0ϕ5

�
∂j

�
Aa0b0

l ϕc0
�
∂kϕ

d0 þ 1

2
Akϕ

d0
��

þ 1

4

�
1 −

1

3
ðϕ5Þ2

�
Aa0b0

l

�
∂jAc0d0

k þ 2

3
ðAjAkÞc0d0

��
;

ðA5Þ

W ¼ 3!εijklε
a0b0c0d0

�
1

16
ϕ5

�
1 −

1

3
ðϕ5Þ2

�
F a0b0

ij F c0d0
kl

þ 1

2
F a0b0

ij ϕc0Dkϕ
d0∂lϕ

5

�
; ðA6Þ

in which Ωi½A;ϕ� is manifestly gauge variant, displaying
the (Euler)–Chern-Simons density which is typical in all
even dimensions, andW½F ;Dϕ� which is manifestly gauge
invariant. Clearly, the Euler density can be added to the
definitions of both (A5) and (A6), but this is unnecessary
here, especially since we do not anticipate the introduction
of a potential term in the Lagrangian.
What is important to realize here is that the gauge variant

density (A5), consists exclusively of gauge variant ele-
ments. This feature, which occurred in the 2 and 3
dimensional cases seen in [5,6], is not a general feature
in all dimensions. In dimensions D ≥ 4, there is the
freedom to remove the total divergence part of the second

term in (A6) and placing it in (A5). The result is again a
gauge invariant definition of the topological charge.D ≥ 4,
the definitions can be altered such that the gauge variant
density consists of both gauge variant and gauge invariant
terms. In this redefinition, Ωi remains gauge variant, while
W remains gauge invariant as required.
By removing a total divergence term in (A6) and placing

it in (A5), we have the more aesthetic definitions for the
densities

Ω̂i ¼ 3!εijklε
a0b0c0d0ϕ5

�
1

2
F c0d0

kl ϕa0Djϕ
b0

þ ∂j

�
Aa0b0

l ϕc0
�
∂kϕ

d0 þ 1

2
Akϕ

d0
��

þ 1

4

�
1 −

1

3
ðϕ5Þ2ÞAa0b0

l

�
∂jAc0d0

k þ 2

3
ðAjAkÞc0d0

��
;

ðA7Þ
Ŵ ¼ 3!εijklε

a0b0c0d0ϕ5

×

�
1

24
ðϕ5Þ2F a0b0

ij F c0d0
kl þ 1

2
F a0b0

ij D½kϕc0Dl�ϕd0
�
: ðA8Þ

Apart from its aesthetic appearance, the density Ŵ, (A8), is
necessary for the statement of the relevant Belavin inequal-
ities in Appendix B below.

2. Group contraction

In (A5)–(A6) and (A7)–(A8), Aa0b0
i is the SOð4Þ con-

nection, F a0b0
ij is the curvature, and Diϕ

a0 ¼ ∂iϕ
a0 þAiϕ

a0

is the covariant derivative, with a0 ¼ 1, 2, 3, 4. In the
notation of (6)–(7), a0 ¼ α; A; α ¼ 1; 2; A ¼ 3, 4.
We now contract the gauge group SOð4Þ by setting the

components of the connection Aa0b0
i ¼ ðAαβ

i ;AAB
i ;AαA

i Þ to
Aαβ

i ¼ Aiε
αβ;AAB

i ¼ Biε
AB, and AαA

i ¼ 0, where Aαβ
i and

BAB
i are now two SOð2Þ connections inside SOð4Þ. The

corresponding curvatures are Fij ¼ ∂ ½iAj�,Gij ¼ ∂ ½iBj� and
FαA
ij ¼ 0. The covariant derivative Diϕ

a0 ¼ ðDiϕ
α;Diϕ

AÞ
now splits up into

Diϕ
α ¼ ∂iϕ

α þ AiðεϕÞα; ðA9Þ

Diϕ
A ¼ ∂iϕ

A þ BiðεϕÞA: ðA10Þ

Finally, identifying7 the two Abelian fields Ai ¼ Bi,
(A9)–(A10) we have the desired gauging prescription
(6)–(7).
As a result of this group contraction, the topolo-

gical charge densities following from (A7)–(A8) are
expressed by

7Alternatively, setting Bi ¼ 0, (A7)–(A8) leads to the corre-
sponding topological charge density displayed in [6], where only
one pair of Skyrme scalars is gauged with SOð2Þ.
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Ω̂i ¼ 3!εijklϕ
5Al

�
−
1

3
ðϕ5Þ2Fjk

þ 2ðεAB∂jϕ
A∂kϕ

B þ εαβ∂jϕ
α∂kϕ

βÞ
�
; ðA11Þ

Ŵ ¼ 3!εijklϕ
5Fij

��
1 −

1

3
ðϕ5Þ2

�
Fkl

þ 2ðεαβDkϕ
αDlϕ

β þ εABDkϕ
ADlϕ

BÞ
�
; ðA12Þ

where Diϕ
α and Diϕ

A are now given by (6) and (7)
respectively, and Fij ¼ ∂iAj − ∂jAi.
Inserting Ω̂i and Ŵ given by (A11)–(A12) into (A1)–

(A2) defines the topological charge density for the SOð2Þ
gauged Oð5Þ model studied here.

3. Charge integrals

We adopt the definition of the topological charge density
(A1) with Ωi being given by (A11), and we denote the
second term by ϱ1 ¼ ∂iΩ̂i. This term is manifestly total
divergence, while the first term in (A1), namely ϱ0 defined
by (A3) is not manifestly total divergence but becomes such
when a constraint compliant parametrization of the scalar
ϕa satisfying (19) is employed. For this purpose, we adopt
the parametrization

Ψ1 ¼ sin f sin g; Ψ2 ¼ sin f cos g; Ψ3 ¼ cos f:

ðA13Þ
In terms of the functionsfðρ; σÞ andgðρ; σÞ (withρ ¼ r sin θ,
σ ¼ r cos θ), ϱ0 reduces to the antisymmetric product

ϱ0 ¼ 2 · 3!
n1n2
ρσ

∂ ½ρF∂σ�G; ðA14Þ

where Fðρ; σÞ and Gðρ; σÞ are the functions

F ¼ cos f þ 2

3
cos3f −

3

5
cos5f; G ¼ sin2g: ðA15Þ

Denoting ðρ; σÞ ¼ yi; i ¼ 1, 2, the volume integral of ϱ0 can
be cast in the formZ

ϱ0d4x ¼ ð2πÞ2n1n2
Z

εij∂iF∂jGd2y

¼ 1

2
ð2πÞ2n1n2

Z
εijðF∂↔jGÞdsi: ðA16Þ

It is interesting to point out here that in evaluating the Stokes
integral (A16), instead of taking 0 ≤ θ ≤ π

2
one can take the

limits0 ≤ θ ≤ mπ
2
,withm an integer. For evenm, the solutions

should be Skyrme-antiSkyrme as in Yang-Mills.
The corresponding integral of the term ϱ1 can also be

evaluated using Stokes theorem, since in that case this

density is manifestly total divergence in terms of the
functions ðf; gÞZ

ϱ1d4x

¼ ð2πÞ2
Z

εij

�
2

3
Ψ3

3½ðað1Þ − n1Þ∂ja2 − ðað2Þ − n2Þ∂ja1�

þ 2Ψ3½n1ðað2Þ − n2Þ∂jΨ2
1 − n2ðað1Þ − n1Þ∂jΨ2

2�
�
dsi;

ðA17Þ
where the volume integral is evaluated by applying Stokes’
Theorem.

APPENDIX B: THE BELAVIN INEQUALITIES
AND THE MODELS

We establish the Belavin inequalities for the SOð4Þ
gauged system, from which follow the corresponding
inequalities pertaining to the gauge-contracted systems,
in particular those giving the lower bound on the static
Hamiltonian of the Lagrangian (10) of the SOð2Þ gauged
model studied here.
The Belavin inequalities are most conveniently derived

from definition (A2) of the topological charge, given by Ŵ
Consider now the inequalities

				ϕ5F a0b0
ij −

1

2!2
εijklε

a0b0c0d0F c0d0
kl

				
2

≥ 0; ðB1Þ
				ϕ5F a0b0

ij −
1

2!2
εijklε

a0b0c0d0D½kϕc0Dl�ϕd0
				
2

≥ 0; ðB2Þ
				D½iϕaDj�ϕb −

1

2!2
εijklε

abcdeD½kϕcDl�ϕdϕe

				
2

≥ 0;

a ¼ a0; 5 ðB3Þ

The inequalities (B1)–(B3) yield

ðϕ5Þ2ð1þ ðϕ5Þ2ÞjF a0b0
ij j2 ≥ 1

4
εijklε

a0b0c0d0 ðϕ5Þ3F a0b0
ij F c0d0

kl ;

ðB4Þ
ðϕ5Þ2jF a0b0

ij j2 þ jD½iϕa0Dj�ϕb0 j2

≥
1

2
εijklε

a0b0c0d0ϕ5F a0b0
ij D½kϕc0Dl�ϕd0 ; ðB5Þ

jD½iϕaDj�ϕbj2 ≥ ϱG: ðB6Þ

Adding 1
6
times (B4) to (B5) and (B6), the right-hand

sides yield the “topological charge” density

ϱ ¼ ϱG þ Ŵ½F ;Dϕ�;

defined by (A2), with W there replaced by Ŵ in (A8).
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Concerning the left-hand side of that inequality, this can
be cast into the form

c1jF a0b0
ij j2 þ c2jφa0b0

ij j2;

(c1, c2 > 0) by simply adding positive definite quantities,
recognizing also that in (A8), the quantity 1

2
ϕ5ð1 − 1

3
ðϕ5Þ2Þ

is always positive.

Thus, after the group contraction described in
Appendix A.1 with F a0b0

ij → Fa0b0
ij and φa

i → ϕa
i , the

static energy density functional pertaining to (10) is the
bounded from below by ϱG½ϕa� plus Ŵ given by (A12).
Clearly, the positive definite quadratic and sextic kinetic
Skyrme terms in (10) can be added without invalidating
the bound.
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