Impacto
Downloads
Downloads per month over past year
Espriu, Domènec and Gómez Nicola, Ángel and Vioque Rodríguez, Andrea (2020) Chiral perturbation theory for nonzero chiral imbalance. Journal of high energy physics (6). ISSN 1029-8479
Preview |
PDF
Creative Commons Attribution. 1MB |
Official URL: http://dx.doi.org/10.1007/JHEP06(2020)062
Abstract
We construct the most general low-energy effective lagrangian including local parity violating terms parametrized by an axial chemical potential or chiral imbalance mu (5), up to O mml:mfenced close=")" open="("p4 ml:mfenced> order in the chiral expansion for two light flavours. For that purpose, we work within the Chiral Perturbation Theory framework where only pseudo-NGB fields are included, following the external source method. The O mml:mfenced close=")" open="("p2 mml:mfenced> lagrangian is only modified by constant terms, while the O mml:mfenced close=")" open="("p4 mml:mfenced one includes new terms proportional to mu 52 and new low-energy constants (LEC), which are renormalized and related to particular observables. In particular, we analyze the corrections to the pion dispersion relation and observables related to the vacuum energy density, namely the light quark condensate, the chiral and topological susceptibilities and the chiral charge density, providing numerical determinations of the new LEC when possible. In particular, we explore the dependence of the chiral restoration temperature T-c with mu (5). An increasing T-c(mu (5)) is consistent with our fits to lattice data of the ChPT-based expressions. Although lattice uncertainties are still large and translate into the new LEC determination, a consistent physical description of those observables emerges from our present work, providing a theoretically robust model-independent framework for further study of physical systems where parity-breaking effects may be relevant, such as heavy-ion collisions.
Item Type: | Article |
---|---|
Additional Information: | © The Authors. |
Uncontrolled Keywords: | Virtual photons; QCD |
Subjects: | Sciences > Physics > Physics-Mathematical models Sciences > Physics > Mathematical physics |
ID Code: | 61493 |
Deposited On: | 17 Jul 2020 00:43 |
Last Modified: | 16 May 2023 16:50 |
Origin of downloads
Repository Staff Only: item control page