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We consider a school choice problem where school priorities depend on (trans-

ferable) student characteristics. We define the Student Exchange with Transferable

Characteristics (SETC) class of algorithms. Each SETC algorithm generates a con-
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characteristics such that the matching i) is stable according to the priorities gener-

ated by that allocation of characteristics and ii) is not Pareto dominated by another

stable matching under any allocation of characteristics. Every constrained efficient

extended matching that Pareto improves upon a stable extended matching is the
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1 Introduction

The School Choice problem studies the mechanisms employed by many school districts to

assign students to public schools (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez,

2003). The canonical formulation of a school choice problem considers a set of students, a

set of schools, and the schools’ quotas, which represent the capacity of each school. Each

student submits a list of school preferences to a central placement authority such as a

school district, and each school has a priority ranking that determines who receives a seat

in case a school experiences excessive demand. The school district decides which students

attend each school using an algorithm (or mechanism) that selects a matching of students

to schools considering the students’ reported preferences as well as the schools’ priorities.

A major concern regarding the design of school choice programs has been the ability to

fairly match students to schools. That is, all students who obtain a seat at a given school

should have a higher priority at that school than the students who preferred that school

rather than the one they are matched to. During recent years, a vast majority of school

districts have implemented school choice algorithms based on Gale and Shapley’s Deferred

Acceptance (DA) Algorithm (Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003;

Abdulkadiroğlu et al., 2005; Pathak, 2016). The application of the student- proposing

DA algorithm to prospective students always results in a stable matching, that is, a fair,

individually rational, and non-wasteful matching.1 However, the matching can be Pareto

dominated by another matching that does not respect schools’ priorities.

In this paper, we present a school choice problem with extended priorities. In the

canonical school choice problem, priorities are a primitive aspect of the model, but school

districts use several criteria to determine priority orders for schools, such as different

characteristics of potential students or tie-breaker lotteries. For example, the Boston

School district considers (lexicographically) the existence of an older sibling and walk zone

proximity (Abdulkadiroğlu et al., 2005). In Spain, characteristics such as family income,

number of siblings, siblings attending the school, and “legacy” points (if parents or older

siblings attended that school) are considered. Students receive points for each of these

characteristics, and the students are then prioritized depending on the number of points

1A matching is individually rational if no student is assigned to a school that she would rather not

attend. A matching is non-wasteful if every school that a student prefers to the school she is assigned to

has filled all its available seats.
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that they receive.2 Our model relies on student characteristics as primitives. In a school

choice problem with extended priorities, students are initially endowed with characteristics

specific to individual schools.3 Each school priority is defined over pairs of students and the

specific student characteristics of that school. Students can exchange the characteristics

of different schools and thus affect their positions in the priority rankings of those schools.

In this context, a matching that Pareto improves the initial matching but may not respect

fairness according to the priority rankings of students generated by the initial distribution

of characteristics may become fair after an exchange of the relevant characteristics among

students.4 Our aim is to explore the possibility of obtaining efficiency gains with respect

to outcomes of the student-proposing DA algorithm that can be justified under schools’

priority rankings after exchanges of characteristics among students.

We propose a class of school choice algorithms, namely, the Student Exchange with

Transferable Characteristics (SETC) algorithms. Each algorithm in this class selects a

constrained efficient extended matching. That is, the outcome of an SETC algorithm is a

matching of students to schools and an allocation of specific transferable characteristics

such that the matching i) is stable with respect to school priorities for new allocations of

characteristics, and ii) is not Pareto dominated by another stable matching with respect to

further admissible reallocations of characteristics. Any such constrained efficient extended

matching can be obtained by an algorithm in the SETC class (Theorem 1).

Our general framework cannot be directly compared with previous analyses of the

2See Casalmiglia et al. (2020); Górtazar et al. (2020) for detailed descriptions of Barcelona and

Madrid’s priority systems.
3A similar formulation was independently proposed by Duddy (2019). This paper discusses the

informational shortcomings of the current priority based model and proposes a formulation based on a

“priority matrix”.
4An obvious candidate for such a transferable characteristic would be the tie-breaking lottery draws

used at different schools when they use different tie-breaking criteria, which can be exchanged. Mul-

tiple tie-breaking criteria are justified, since they reduce the chances that overdemanded schools will

systematically reject a student who has a bad lottery draw (Arnosti, 2016). Amsterdam’s school choice

program reform in 2014 introduced a system based on the DA algorithm with multiple tie-breaking cri-

teria. In 2015, this decision was challenged in court by families who wished to switch school seats, which

could be justified by an exchange of the priorities established by multiple tie-breaking criteria. The

issue is discussed in Ashlagi et al. (2019) and https://www.nemokennislink.nl/publicaties/schoolstrijd-

in-amsterdam/(Schoolstrijd in Amsterdam) (Arnout Jaspers, Kennislink, July 1, 2015, accessed April

27th 2021).
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possibility of relaxing the trade-off between stability and efficiency by dropping stability

constraints when some students do not benefit from exercising their priority rights, as

is done in Kesten (2010) and Alcalde and Romero-Medina (2017). For this reason, in

Section 4, we study a case in which all characteristics are fully transferable. In this

case, our extended framework can be reduced to the canonical school choice problem with

priorities. In this setting, the set of outcomes produced by an SETC algorithm coincides

with the set of α−fair matchings defined in Alcalde and Romero-Medina (2017) (Corollary

2). Furthermore, when we can define the EADA-SETC algorithm, a particular member of

the SETC class that selects an extended matching where the resulting matching coincides

with the outcome of theEfficiency Adjusted Deferred Acceptance Mechanism (EADAM)

defined by Kesten (2010) (Theorem 2).

Our approach can be useful for improving efficiency in situations where we can distin-

guish between allocative criteria (such as tie-breakers) and fairness constraints (such as

the need for siblings to attend the same school) in the formation of priorities. For exam-

ple, we can think about the allocation of medical resources. Consider a situation where

public medical services are regionally managed, as is done in Spain. In this case, a patient

may be eligible for different treatments or drugs depending on her characteristics (such

as age, life expectancy or health) and on the assortment of treatments available from her

regional government. If we view patients’ characteristics as determinants of their access

to treatment and their residences only as allocative criteria, the algorithms in the SETC

class allow us to implement welfare-improving exchanges of treatments or drugs across

regions while respecting fairness requirements.

1.1 Related Literature

The school choice problem was first presented by Balinski and Sönmez (1999), who intro-

duce the idea of fairness to the context of allocating school seats to students. Abdulka-

diroğlu and Sönmez (2003) analyze this problem from a mechanism design perspective.

These authors show that a student-proposing DA algorithm always selects stable matches

and is strategy-proof.5 They also study an adaptation of Gale’s Trop Trading Cycle mech-

anism (TTCM) (Shapley and Scarf, 1974) and show that it always selects Pareto-efficient

matchings and is strategy-proof. Unfortunately, stable matchings are not efficient, and,

5A mechanism is strategy-proof if students have incentives to report their true preferences.
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indeed can have severe levels of inefficiency (Dur and Morrill, 2017; Kesten, 2010; Ab-

dulkadiroğlu et al., 2009).

There have been attempts to alleviate the trade-off between stability and efficiency

by weakening the notion of fairness. Kesten (2010) proposes an EADAM that finds a

constrained efficient matching by incorporating the possibility that students may consent

to renounce their priorities in relation to schools where they cannot obtain a seat according

to the student-proposing DA algorithm.6 Alcalde and Romero-Medina (2017) propose an

alternative weakening of fairness dubbed α-equitability. Ehlers and Morrill (2020) relax

the fairness constraint and propose a stable set of legal matchings that are not dominated

in terms of fairness by any other legal matching. Finally, Alva and Manjunath (2019)

present the concept of stable domination.

The closest paper to ours is that of Dur et al. (2019), which proposes an alternative

weakening of stability called partial stability. Under partial stability, certain priorities of

certain students at certain schools are ignored. Then, the welfare gains that can be cap-

tured by applying the improvement cycles approach proposed by Erdil and Ergin (2008)

for school choice problems with weak priorities and arbitrary tie-breakers are explored.

Similar to Dur et al. (2019) our paper uses improvement cycles. However, beyond this

point, the two papers have considerable differences. First, the primitives in our model are

not school priorities but the individual student characteristics on which those priorities

are based. Second, in our case, the resulting extended matching is an allocation of both

school seats and student characteristics. Third, the possible welfare gains that we capture

are derived from exchanges of characteristics. That is, the resulting extended matching

of our model is justified by the final allocation of transferable characteristics. Fourth,

the SETC algorithms consider exchanges of characteristics and, contrary to the stable

improvement cycle algorithm in Erdil and Ergin (2008), some of the students who partici-

pate in these cycles only exchange characteristics and facilitate other exchanges, and they

are weakly better off. Finally, there is a technical difference between these papers. Our

framework does not require that additional conditions be imposed on the set of priorities

that may be ignored.7 Our results only require that school priorities are complete and

monotonic in terms of student characteristics.

6See also Tang and Yu (2014) for an alternative algorithm for the EADAM.
7Assumption 1 in Dur et al. (2019). See Remark 1 in Section 2.
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The rest of the paper is organized as follows. In Section 2, we introduce the model and

notation utilized. In Section 3, we present our main results. In Section 4, we relate our

framework of transferable characteristics to that of school choice with consent proposed

by Kesten (2010). In Section 5, we conclude this paper. In Section 6, we provide the

proofs of our work.

2 Notation and Definitions

We present the elements of the canonical school choice problem and introduce a school

choice problem with extended priorities and transferable characteristics.

Let I be a finite set of students and S be a finite set of schools where the students

must be allocated. Each student i has a strict preference of Pi over S ∪ {∅},8 where {∅}
denotes the option of being unassigned. We use Ri to signify the weak preference relation

associated with Pi, which is defined in the standard way. Each school s has a limited

number of seats available qs.

A matching is a function µ : I → S∪{∅} such that (i) for each i ∈ I, µ(i) ∈ S∪{∅}
and (ii) for each s ∈ S, µ−1(s) ≤ qs.

9 A matching µ′ Pareto dominates the matching

µ if for each i ∈ I µ′(i) Ri µ(i) and for some j ∈ I µ′(j) Pj µ(j).

The final component of the canonical school choice problem is school priorities. Each

school ranks its prospective students according to a priority order. Our contribution is

to explore the structures of such priority orders. We consider that school priorities may

depend on different student characteristics. Some of these characteristics are intrinsic to

individual students, but others can be exchanged among students. The relevant priorities

for schools depend on the final allocation of such characteristics.

For each student i, let ω(i) = (ωs(i))s∈S be the initial endowment of the transferable

characteristics that influence the position of student i at each school s. For each school

s, let Ωs ≡ ∪i∈Iωs(i). A permutation of the transferable characteristics for school s,

λs : I → Ωs, is a bijection from I to Ωs.10 Let Ls be a set of all the permutations of

8A strict preference is a complete, antisymmetric, and transitive binary relation.
9For any set A, #A stands for the cardinality of the set A.

10For each i ∈ I and s ∈ S, there is j ∈ I with λs(i) = ωs(j), and for each j, j′ ∈ I, λs(j) 6= λs(j′).
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transferable characteristics for s. We call λ = (λs)s∈S an allocation of transferable

characteristics . Finally, for each student i and each allocation λ, λ(i) ≡ (λs(i))s∈S. We

use ω to denote the initial endowment allocation of transferable characteristics.

When characteristics are transferable, their assignment is relevant. Note that each

allocation of transferable characteristics λ can be obtained via the characteristic exchange

cycles between the students. An extended matching is a pair (µ, λ) where µ is a

matching and λ is an allocation of transferable characteristics. Abusing notation, we say

that the extended matching (µ, λ) Pareto dominates the extended matching (µ′, λ′) if µ

Pareto dominates µ′.

In a school choice problem with extended priorities, school priorities not only compare

students but also pairs of students and the allocations of transferable characteristics that

they present to the school choice process. Hence, each school has a complete, transitive,

and antisymmetric binary relation �s with I × Ωs. We use the notation %s to refer to

the weak priority relation associated with �s.

Throughout this paper, we assume that transferable characteristics are monotonous

in the sense that they affect all students in the same direction.

Monotonous Priorities For each i, j ∈ I , s ∈ S, and for each l, l′ ∈ Ωs, (i, l) �s (i, l′)

if and only if (j, l) �s (j, l′).

Under monotonous priorities, for each s, the set Ωs is naturally ordered; abusing

notation, for each Ls ⊆ Ωs, we define

max{Ls} ≡ {l ∈ Ls| for each i ∈ I, l′ ∈ Ls, (i, l) %s (i, l′)}.

Remark 1. Under monotonous priorities, for each school s, λs, i0, i1, i2, i3 ∈ I, and

extended priority %, if

(i1, λ
s(i1)) �s (i2, λ

s(i2)) �s (i3, λ
s(i3)), and

(i3,max{λs(i0), λs(i3)}) %s (i1, λ
s(i1))

then (i3,max{λs(i0), λs(i3)}) %s (i2, λ
s(i2)).
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A school choice problem with extended priorities is a 6-tuple (I, S, (Ri)i∈I , ω, (�s)s∈S, (qs)s∈S).

Henceforth, we consider an arbitrary school choice problem with extended priorities and

do not refer to the specific problem whenever it does not induce confusion.

Finally, we present a stability notion that takes into account the fact that school

priorities depend on the identities of students and some transferable characteristics.

An extended matching (µ, λ) is (ex-post) stable if:

• µ is fair under λ: For each i, j ∈ I, µ(j), Pi µ(i) implies (j, λs(j)) �µ(j) (i, λs(i)).

• µ is individually rational : For each i ∈ I, µ(i) Ri {∅}

• µ is non wasteful : For no i ∈ N or s ∈ S, s Pi µ(i) and #µ−1(s) < qs.

The definition of (ex-post) stable coincides with the natural notion of stability. An (ex-

post) stable extended matching does not elicit complaints from students who would like

to change the school that they are assigned to. Extended matching respects the priorities

of students under the final allocation of transferable characteristics λ.

It is worth noting that our notion of (ex-post) stable is parallel to the concept of

partial stability in Dur et al. (2019) but we provide a rationale and structure for the

initial priorities (under the initial endowment of transferable characteristics) that are not

necessarily respected in the final assignment of students to schools. In light of Remark 1,

since schools have monotonous extended priorities, we do not need to introduce additional

restrictions on students’ priorities that will not necessarily be respected.11

We are interested in obtaining (ex-post) stable extended matchings that are not Pareto

dominated by other (ex-post) stable extended matchings. When there is no possibility of

exchanging transferable characteristics, the student-proposing DA algorithm selects an

(ex-post) stable extended matching based on the initial endowment of transferable char-

acteristics. In the extended matching framework, the student-proposing DA algorithm

runs as follows: In the first step, all students apply to their favorite schools. Then, each

school matches each applicant according to her respective transferable characteristics in

order of extended priority, placing them on waitlists until the corresponding quota is

reached; then, all remaining applicants are rejected. In each subsequent step, all the

11See Assumption 1 in Dur et al. (2019).
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students rejected in the previous step apply to their favorite schools among those who

have not yet rejected them. Then, each school organizes its applicants (both new and

waitlisted) in order of extended priority, on a new waitlist until their quotas are reached,

and they reject all the remaining applicants. The algorithm stops when no students are

rejected. Each student is then assigned to the school at which she is currently waitlisted or

remains unassigned to a school if she has been rejected at every school that she prefers to

∅. Gale and Shapley (1962) prove that the selected matching Pareto dominates all other

(ex-post) stable extended matchings under an initial endowment of transferable character-

istics. We can apply the same logic to any allocation of transferable characteristics λ, and

we define µSOλ as the matching obtained by the student-proposing DA algorithm under λ.

We call (µSOω , ω) the student optimal stable extended matching (SOSEM).12

If students may exchange their transferable characteristics, we are able to find (ex-

post) stable extended matchings (µ, λ) such that µ Pareto dominates µSOω . We focus

on extended matchings that can be obtained through limited exchanges of transferable

characteristics that justify changes in the students’ matches.

Given an extended matching (µ, λ), we say that (µ̄, λ̄) is a reshuffling of (µ, λ) if

for each i ∈ I and for each s /∈ {µ(i), µ̄(i)}, λs(i) = λ̄s(i).

We now present a notion that captures the idea of obtaining efficient matchings that

satisfy the requirements of fairness and stability when transferable characteristics can be

exchanged.

An extended matching (µ, λ) is constrained efficient if it is (ex-post) stable and if

µ′ does not Pareto dominate µ for any (ex-post) stable reshuffling (µ′, λ′).

Example 1. Let I = {i1, i2, i3}, S = {s1, s2, s3}, and qsx = 1 for x = 1, 2, 3. The

students’ preferences are:

Pi1 Pi2 Pi3

s2 s1 s1

s1 s2 s2

s3 s3 s3

{∅} {∅} {∅}
12Note that if there is a matching ν 6= µSO

ω such that (ν, ω) is (ex-post) stable, then µSO
ω Pareto

dominates ν.
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Each school uses a cardinal raking based on two criteria to create their priority rank-

ings. They consider scores related to nontransferable characteristics intrinsic to each

student as well as transferable characteristics, for example, students’ legacy points if their

parents are alumni at the school.

Assume that legacy is a transferable characteristic. Student i1 has legacy points for s1,

student i2 has legacy points for s2, while student i3 has no legacy points. Hence, we can

write the endowment allocation of the initial transferable characteristics as:
ω(i1)

ω(i2)

ω(i3)

 =


(ωs1(i1), ωs2(i1), ωs3(i1))

(ωs1(i2), ωs2(i2), ωs3(i2))

(ωs1(i3), ωs2(i3), ωs3(i3))

 =


(1, 0, 0)

(0, 1, 0)

(0, 0, 0)

 .

Additionally, the school priorities under the initial endowment allocation of transfer-

able characteristics are:

�s1 �s2 �s3
(i1, 1) (i2, 1) (i3, 0)

(i3, 0) (i3, 0) (i2, 0)

(i2, 0) (i1, 0) (i1, 0)

Finally, µSOω = {(i1, s1), (i2, s2), (i3, s3)}.

When students {i1, i2} exchange their transferable characteristics, the allocation of

these exchangeable characteristics is:
λ(i1)

λ(i2)

λ(i3)

 =


(λs1(i1), λs2(i1), λs3(i1))

(λs1(i2), λs2(i2), λs3(i2))

(λs1(i3), λs2(i3), λs3(i3))

 =


(0, 1, 0)

(1, 0, 0)

(0, 0, 0)

 .

Additionally, the extended school priorities under λ are:

�s1 �s2 �s3
(i2, 1) (i1, 1) (i3, 0)

(i3, 0) (i3, 0) (i2, 0)

(i1, 0) (i2, 0) (i1, 0)

10



The application of the student-proposing DA algorithm under the allocation of transferable

characteristics λ results in the matching µSOλ = {(i1, s2), (i2, s1), (i3, s3)}. Hence, (µSOλ , λ)

is (ex-post) stable. Clearly, µSOλ Pareto dominates µSOω . Actually, there is no matching

µ′ that Pareto dominates µSOλ . Hence, the extended matching (µSOλ , λ) is constrained

efficient.

The following example extends Example 1 and illustrates the difficulties that may

arise when characteristics are not school specific. It may be the case that some students

can exchange seats at their initially assigned schools and that with exchanges of trans-

ferable characteristics, all the remaining student priorities regarding those schools can be

respected. However, if transferable characteristics are not school specific, their exchange

may trigger a chain of fairness violations in other schools.13

Example 2. Let I = {i1, i2, i3, i4, i5}, S = {s1, s2, s3, s4, s5}, and qsx = 1 for x = 1, . . . , 5.

The students’ relevant preferences are:

Pi1 Pi2 Pi3 Pi4 Pi5

s4 s1 s1 s4 s5

s2 s2 s2 s5 s4

s1 s3 s3 {∅} {∅}
s3 {∅} {∅}
{∅}

The student characteristics in this example exhibit the same distribution as those in

Example 1, but the transferable characteristics of school s2 are also relevant for school s4.

Hence, the initial endowment allocation of transferable characteristics is:

ω(i1)

ω(i2)

ω(i3)

ω(i4)

ω(i5)


=



(ωs1(i1), ωs2(i1), ωs3(i1), ωs4(i1), ωs5(i1))

(ωs1(i2), ωs2(i2), ωs3(i2), ωs4(i2), ωs5(i2))

(ωs1(i3), ωs2(i3), ωs3(i3), ωs4(i3), ωs5(i3))

(ωs1(i4), ωs2(i4), ωs3(i4), ωs4(i4), ωs5(i4))

(ωs1(i5), ωs2(i5), ωs3(i5), ωs4(i5), ωs5(i5))


=



(11, 0, 0, 0, 0)

(0, 12, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)


.

13This example can be readily tailored to illustrate the problems that arise if we hold that the reallo-

cation of transferable characteristics are not organized by reshufflings.
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Additionally, the school priorities under the initial endowment allocation of transfer-

able characteristics are:

�s1 �s2 �s3 �s4 �s5
(i1, 11) (i1, 12) (i3, 0) (i5, 0) (i4, 0)

(i4, 0) (i2, 12) (i2, 0) (i1, 12) (i5, 0)

(i2, 11) (i3, 0) (i1, 0) (i4, 0)

(i3, 0) (i2, 0) (i1, 0)

(i2, 0)

and µSOω = {(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s5)}.

When students {i1, i2} exchange their transferable characteristics, the allocation of

exchangeable characteristics is λ′.

λ′ =



(0, 12, 0, 0, 0)

(11, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)


.

Through exchanges of transferable characteristics, students i1 and i2 can improve their

school matches by exchanging their respective seats at s1 and s2. This exchange of trans-

ferable characteristics helps avoid any legitimate claim of student i3 on s1, and the result-

ing matching µ′ = {(i1, s2), (i2, s1), (i3, s3), (i4, s4), (i5, s5)} represents a Pareto improve-

ment with respect to µ. However, the extended matching (µ′, λ′) is not (ex-post) stable.

After obtaining 12, student i1 could claim student i4’s position at school s4. In fact,

µSOλ′ = {(i1, s1), (i2, s3), (i3, s2), (i4, s5), (i5, s4)}. That is, the initial Pareto improvement

achieved by the aforementioned exchange of transferable characteristics initiates a chain

reaction that leads to an extended matching where the students initiating exchanges do not

benefit.
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3 Improvement Cycles for Extended Matchings

In this section, we propose a systematic method to obtain constrained efficient extended

matchings. Our approach follows those of Erdil and Ergin (2008) and Dur et al. (2019),

who propose a method for finding fair Pareto-improving trade cycles based on the outcome

of the student-proposing DA algorithm for coarse priorities with arbitrary tie-breakers

and partially non-enforceable priorities, respectively. In both papers, the logic behind

improving the cycles is related to the idea of vacancy chains introduced by Blum et al.

(1997). For an initial stable matching involving a position at some school, if the student

assigned to that position finds another position, her seat can be occupied by another

student such that no other student with higher priority at that school prefers that seat

to the position at the initial matching.

The following concepts extend the graph–theoretical approach presented by Dur et al.

(2019) to the extended priorities framework. We use a similar logic when relevant school

priorities depend on students’ transferable characteristics. The difference between our

model and that of Dur et al. (2019) is that in our model, students may be willing to

move to a position at a desirable school but, depending on the student who exchange

the transferable characteristics, some violation of fairness may appear. Therefore, Pareto

improvements involving two students may require the participation of additional students

who only exchange transferable characteristics without becoming involved in a school

exchange.

Given an (ex-post) stable extended matching (µ, λ), for each school j ∈ I, let:

• D(µ,λ)(j) = {i ∈ I : µ(j) Ri µ(i)} and D̃(µ,λ)(j) = {i ∈ I : µ(j) Pi µ(i)}.

• X(µ,λ)(j) = {i ∈ D(µ,λ)(j) : ∀k ∈ D̃(µ,λ)(j)\{i}, (i,max{λs(i), λs(j)}) �s (k, λs(k))}.

The set D̃(µ,λ)(j) contains all the students who prefer the match of student j over their

own matches. The set D(µ,λ)(j) also includes all the students who are matched to µ(j).

The set X(µ,λ)(j) includes all the students who would be willing to occupy j’s position at

µ(j) and therefore would not be envious if they were matched to µ(j) should j leave her

position. The members of X(µ,λ)(j) are the students in D(µ,λ)(j) who are ranked above the

remaining members of D̃(µ,λ)(j) and have either obtained λµ(j)(j) or maintained λµ(j)(j).

13



Hence, if j moves to a preferred school and a member of X(µ,λ)(j) obtains j’s position at

µ(j), no one could argue that this change violates her priority for µ(j).

Let G = (V ;E) be a (directed) application graph with the set of vertices V and the

set of directed edges E, which is a set of ordered pairs from V .

For each extended matching (µ, λ), G(µ, λ) = (I;E(µ, λ)) is the (directed) appli-

cation graph associated with (µ, λ) where the set of directed edges E(µ, λ) ⊆ I × I
is defined by ij ∈ E(µ, λ) (that is, i points to j) if and only i ∈ X(µ,λ)(j). A set of

edges φ = {i1i2, i2i3, . . . , inin+1} is a path if the related vertices i1i2, i2i3, . . . , inin+1 are

distinct, and it is a cycle if the vertices i1i2, i2i3, . . . , inin+1 are distinct and i1 = in+1.

Student i is involved in cycle φ if there is a student j such that ij ∈ φ. A cycle

φ = {i1i2, i2i3, . . . , inin+1} is solved when for each ij ∈ φ, student i is assigned to µ(j)

and a new matching is obtained. Formally, we denote the solution of a cycle by the op-

eration ◦, that is, η = φ ◦ µ if and only if for each ij ∈ φ , η(i) = µ(j), and for each

i′ /∈ {i1, . . . , in} , η(i′) = µ(i′). A cycle φ is an improvement cycle for G(µ, λ) if there

is an ij ∈ φ such that i ∈ D̃(µ,λ)(j).

The following algorithm is built on an (ex-post) stable extended matching and is defined

by solving cycles iteratively.

Student Exchange with Transferable Characteristics (SETC) Algorithm:

Step 0: Let (µ0, λ0) be an (ex-post) stable extended matching.

Step k ≥ 1: Given the extended matching (µk−1, λk−1),

(k.1) if there is an improvement cycle in G(µk−1, λk−1), solve any one of such cycles,

for example, φk; let µk = φk ◦ µk−1, and define λk as follows. For each i ∈ I, let

sk = µk(i) and s0 = µ0(i).

• For each s /∈ {s0, sk}, λsk(i) = λs0(i).

• If there is no i′ such that ii′ ∈ φk, then λskk (i) = λskk−1(i).

• If there is an i′ such that ii′ ∈ φk, then λskk (i) = max{λskk−1(i), λskk−1(i′)}.

• If there is a j such that λs00 (i) = λs0k (j), then λs0k (i) = λs00 (j); otherwise,

λs0k (i) = λs00 (i).
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Next, move to Step k + 1.

(k.1) if there is no improvement cycle in G(µk−1, λk−1), then the algorithm stops and

(µk−1, λk−1) is the obtained extended matching.

Since sets of schools and students are finite, the algorithm stops after a finite number

of steps. Actually, at most, there are 1
2
#I(#I − 1) possible Pareto improvements. Note

that the definition of the SETC algorithm entails a class of algorithms, as there may be

several incompatible Pareto improvements and the order in which cycles are solved may

lead to different final outcomes.

Example 3 shows the relevance of constructing improvement cycles for students who

do not strictly benefit from exchanging their transferable characteristics.

Example 3. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3}, qsx = 1 for x = 1, 3; and qs2 = 2.

The students’ preferences are:

Pi1 Pi2 Pi3 Pi4

s2 s1 s1 s2

s1 s2 s2 s3

s3 s3 s3 s1

{∅} {∅} {∅} {∅}

The initial endowment of transferable characteristics w is defined by:
ω(i1)

ω(i2)

ω(i3)

ω(i4)

 =


(ωs1(i1), ωs2(i1), ωs3(i1))

(ωs1(i2), ωs2(i2), ωs3(i2))

(ωs1(i3), ωs2(i3), ωs3(i3))

(ωs1(i4), ωs2(i4), ωs3(i4))

 =


(1, 0, 0)

(1, 0, 0)

(0, 0, 0)

(0, 1, 0)

 .

Additionally, the school priorities are as follows:

�s1 �s2 �s3
(i1, 1) (i4, 1) (i4, 0)

(i3, 1) (i3, 0) (i3, 0)

(i2, 1) (i1, 1) (i2, 0)

(i4, 0) (i2, 0) (i1, 0)

(i3, 0) (i1, 0)
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The application of the student-proposing DA algorithm produces the matching µSOω =

{(i1, s1), (i2, s3), (i3, s2), (i4, s2)}. The assignment µ′ = {(i1, s2), (i2, s3), (i3, s1), (i4, s2)}
Pareto dominates µ, but if i1 and i3 exchange their transferable characteristics, then the

resulting extended matching does not respect student i2’s priority at school s2 because

ωs2(i3) = 0 and (i2, 0) �s2 (i1, 0). However, if student i4 participates in this exchange of

characteristics, we obtain the following reshuffling of transferable characteristics:

λ =


λ(i1)

λ(i2)

λ(i3)

λ(i4)

 =


(λs1(i1), λs2(i1), λs3(i1))

(λs1(i2), λs2(i2), λs3(i2))

(λs1(i3), λs2(i3), λs3(i3))

(λs1(i4), λs2(i4), λs3(i4))

 =


(0, 1, 0)

(1, 0, 0)

(1, 0, 0)

(0, 0, 0)

 .

Indeed, µ′ = µSOλ and (µ′, λ) are (ex-post) stable. Moreover, since students i1, i3, and i4

obtain seats at their most preferred schools, there is no matching ν that Pareto dominates

µ′. Hence, (µ′, λ) is constrained efficient.

s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 1: Example 3. Student ix points student iy if ix ∈ D(µ,ω)(iy). Solid lines: ix points

at iy if ix ∈ D̃(µ,ω)(iy). Dotted Lines: ix points at iy if ix ∈ D(µ,ω)(iy) , µ(ix) = µ(iy).

Starting from the SOSEM, Figure 1 presents a graph where each student points to the

positions of the students whose positions they would like to occupy (including indifference

relations). Figure 2 shows the strict improvements that would not elicit justified envy,

and it can be observed that no cycle can be constructed. Note that i1 does not point at

16



s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 2: Example 3. Graph associated with (µ, ω). Student ix points at student iy if

ix ∈ X(µ,ω)(iy) and µ(ix) 6= µ(iy).

s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 3: Example 3. G(µ, ω). Student ix points at student iy if ix ∈ X(µ,ω)(iy).
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i3 because (i2, ω
s2
i2

) �s2 (i1,max{ωs2i1 , ω
s2
i3
}). Figure 3 presents the graph associated with

(µ, ω). We observe the existence of a unique cycle, namely, γ = i1i4i3i1. Solving γ

generates the extended matching (µ′, λ). Finally, Figure 4 presents the graph G(µ′, λ).

This graph contains no improvement cycles, and indeed, the extended matching (µ′, λ) is

(ex-post) stable and constrained efficient.

s2

s1 s3

+ +

++

i4

i3 i2

i1

Figure 4: Example 3. G(µ′, λ). Student ix points at student iy if ix ∈ X(µ,ω)(iy).

Remark 2. The school priorities presented in Example 3 are consistent with point-system

based priorities. Point systems generate additively separable extended priorities. That is,

for each school s, for each pair of students ix, iy, and for each λs, λ̄s ∈ Ωs, (ix, λ
s) �s

(iy, λ
s) if and only if (ix, λ̄

s) �s (iy, λ̄
s).

Next, we present our main results. Starting from any (ex-post) stable extended match-

ing, the application of an algorithm of the SETC class always yields a constrained efficient

and (ex-post) stable extended matching. Moreover, any constrained efficient extended

matching can be obtained with an SETC algorithm by starting with the SOSEM. Hence,

SETC-class algorithms identify all improvement cycles that yield (ex-post) stable extended

matchings.

Theorem 1. For each problem, an extended matching is constrained efficient and Pareto

dominates the SOSEM if and only if it is obtained with an algorithm of the SETC class

by starting with the SOSEM.

The proof of Theorem 1 follows similar arguments to those related to the proof of

Dur et al. (2019) but the extended model entails important intricacies. Transferable
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characteristics differ between students, and only exchanges involving specific students in

a school may be mutually viable. Moreover, improvement cycles may need to involve

students who do not strictly benefit from these exchanges but are needed to facilitate

reassignment through transferable characteristic trades.

Certain immediate consequences follow from Theorem 1. Since the result of an SETC

algorithm is constrained efficient with respect to its final allocation of transferable charac-

teristics, then it is equal to the result of the SOSEM for the final allocation of transferable

characteristics.

Corollary 1. For each problem, each (ex-post) stable matching (µ0, ω), and each SETC

algorithm, if the extended matching (µ, λ) is an outcome of an SETC algorithm then

(µ, λ) = (µSOλ , λ).

We conclude this section by analyzing the incentives of students to reveal their true

preferences when an allocation of school seats is determined by an SETC algorithm. For

that purpose, we need to introduce further notation related to the outcomes of different

problems and defined for different profiles of student preferences.

Let P denote the complete set of student preference profiles andM be a set of all the

extended matchings. A mechanism is a mapping Ψ : P →M.

The application of an SETC algorithm starting with the SOSEM that corresponds to

each preference profile defines a mechanism that always selects an (ex-post) stable and

constrained efficient extended matching. We call this class of mechanisms the students’

optimal transferable characteristics (SOTC) class of mechanisms.

Strategy-proofness A mechanism Ψ satisfies strategy-proofness if for each i ∈ N ,

each P, P ′ ∈ P , such that for each j 6= i, Pj = P ′j , Ψ(P ) = (µ, λ) and Ψ(P ′) = (µ′, λ′),

µ(i) Ri µ
′(i).

Strategy-proofness implies that no student has the capacity or incentive to manipulate

the results of this mechanism by misreporting her preferences regarding schools. Accord-

ing to the results in the work of Abdulkadiroğlu et al. (2009); Kesten (2010); Alva and

Manjunath (2019); Kesten and Kurino (2019), since the matching selected by any SETC

algorithm that starts with the SOSM matching Pareto dominates the SOSM matching
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for the initial endowment of characteristics and is not Pareto dominated by any other

matching, any mechanism in the SOTC class is manipulable in relation to some profile of

student preferences.

Proposition 1. There is no mechanism in the SOTC class that satisfies strategy-proofness.

4 Fully Transferable Characteristics

In the previous sections, we analyze a new setting where trade-offs between stability and

efficiency can be attenuated. In a school choice problem with extended priorities, some

violations of initial priorities can be justified after exchanges of transferable characteristics.

The introduction of this new component to the canonical school choice problem does not

allow us to make an immediate comparison to previous works that consider dropping

stability constraints when some students do not benefit from exercising their priority

rights.

In particular, the concepts of α-stability in Alcalde and Romero-Medina (2017) and of

students consenting to drop their initial priorities in Kesten (2010) imply that proposed

matchings are met with no objections although the initial priorities of some students are

not respected by these matchings. In both cases, the exertion of some priorities by some

students at some schools that block the assignment of seats to other students may not

ultimately lead to a placement improvement for the blocking student. Therefore, students

are either not allowed to exert their priority rights (Alcalde and Romero-Medina (2017))

or encouraged not to claim a seat if doing so would be ineffective(Kesten (2010)).

Although the proposals of Alcalde and Romero-Medina (2017) and Kesten (2010)

are presented in terms of the canonical school choice problem, preventing the immediate

comparison of this work with our results, there is an extreme class of extended priorities

that allows us to view both of these proposals as particular cases of extended matchings

obtained by SETC algorithms. This can be done in the domain of fully transferable

extended priorities, which are completely defined by transferable characteristics and which

allow us to address both concepts of priority renouncement.
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Fully Transferable Extended Priorities. For each i, i′, j, j′ ∈ I, s ∈ S, and for each

λs, λ̄s ∈ Ls, (i, λs) �s (i′, λ̄s) if and only if (j, λs) �s (j′, λ̄s).

In cases where transferable characteristics entirely determine school priorities, if a

student participates in an improvement cycle and receives the transferable characteristic

that initially secured his or her seat, then the initial priority that another student may

have had for that seat is no longer relevant.

In the context of fully transferable priorities, the analyses of the SETC algorithms are

simpler, since any student that desires the position of another student can obtain it with

an exchange of transferable characteristics.

Proposition 2. Let (µ, λ) be an (ex-post) stable extended matching and G(µ, λ) the

(directed) application graph associated with (µ, λ). If school extended priorities are fully

transferable and i ∈ D̃(µ,λ)(j), then ij ∈ G(µ, λ).

In the context of fully transferable priorities, students who exchange their character-

istics but remain assigned to the same school do not need to participate in improvement

cycles. Moreover, since any Pareto improvement of a matching can be achieved by form-

ing disjointed exchange cycles among students and because such cycles correspond to the

cycle in graph G(µSOω , ω) of Theorem 1 and Proposition 2, we immediately derive the

following result.

Proposition 3. Let school extended priorities be fully transferable. If µ is a matching

that Pareto dominates µSOω and µ is not Pareto dominated by any matching ν, then there

is a reshuffling λ such that (µ, λ) is the result of the application of an SETC algorithm

that starts with the SOSEM.

Alcalde and Romero-Medina (2017, Theorem 1) proves that the set of efficient match-

ings that are Pareto improvements over the initial optimal student matching coincides

with an ideal set of matchings such that under the initial priorities, no student can pose

an admissible objection. That is, whenever a student proposes (objects) an alternative

matching where she would obtain a preferred seat for which she has a priority right,

another student could rightfully object to that alternative matching (α-fair matchings).

Hence, the set of matchings produced by an SETC algorithm coincides with the set of

α-fair matchings produced under the assumption of fully transferable extended priorities.
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Corollary 2. Let school extended priorities be fully transferable. A matching µ is an

α-fair matching if and only if there is a reshuffling λ such that the extended matching

(µ, λ) is the result of the application of an SETC algorithm that starts with the SOSEM

Kesten (2010) occupies a central position in the extant analysis of Pareto-efficient

matching in the context of school choice. This study proposes the idea of consent. Stu-

dents can consent to withdraw their claims to seats that they will not accept. This

idea leads to a modification of the student-proposing DA algorithm that yields a Pareto-

efficient matching with “minimal” violations of initial priorities, the Efficiency Ad-

justed Deferred Acceptance Algorithm (EADA). Tang and Yu (2014) present a

simpler algorithm with the same outcome using the concept of underdemanded schools

that we present now.14

(Simplified) Efficiency Adjusted Deferred Acceptance Algorithm (EADA):

Given a matching µ, a school s is underdemanded in relation to µ if no student

prefers s to the school to which they are assigned by µ. The simplified EADA algorithm

works by executing the student-proposing DA algorithm iteratively after sequentially al-

tering the preferences of students assigned to underdemanded schools. Starting with the

SOSEM, as a first step, the student-proposing DA algorithm is executed a second time

with the students previously assigned to underdemanded schools listing those schools as

their top choices. Therefore, in this second stage, students at underdemanded schools

retain their seats, and their potential priorities at schools where they cannot obtain seats

become ineffective. This process is repeated iteratively until there are no underdemanded

schools.

Next, we propose the EADA-SETC algorithm, a specific SETC algorithm that under

transferable priorities selects the matching obtained by the (simplified) EADA algorithm.

The successive selection of cycles utilized by this algorithm involves identifying the stu-

dents assigned to underdemanded schools, dropping the potential cycles involving those

students, and of the remaining cycles, solving those that would satisfy the extended

14The resulting matching is a unique efficient matching µ∗ such that there is no other matching ν that

can improve the situation of any student whose priority is violated in µ unless ν violates the priority of

a student whose situation is worsened (Reny, 2021).
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priorities under the initial endowments of the students who are not assigned to under-

demanded schools first. This process is equivalent to running the student-proposing DA

algorithm when students who are assigned to underdemanded schools report that those

underdemanded schools are their most preferred alternative. Running this process iter-

atively until an extended matching where no school is underdemanded is obtained leads

to a constrained efficient extended matching through the matching process of the EADA

algorithm.

Let us consider a matching µ and a subset of students S ⊆ N ; let the graph G∗(µ, S)

be such that ij ∈ G∗(µ, S) if and only if i, j ∈ S and µ(j) Pi µ(i) and for each l ∈ S \ {i}
with µ(j) Pl µ(l) and (i, ωµ(j)(i)) �i (l, ωµ(j)(l)).

EADA-SETC Algorithm:

Step 0. Let (µ0, λ0) be the student optimal extended matching I0 = N and U0 the set

of underdemanded schools at µ0.

Step k≥1. Given (µk−1, λk−1):

Stage k.0. If Uk−1 = ∅, stop; (µk−1, λk−1) is the selected extended matching. Otherwise,

let (µ0
k, λ

0
k) = (µk−1, λk−1), Ik = Ik−1 \ {l ∈ Ik−1, µk(l) ∈ Uk−1 ∪ {l}} and Sk =

Sk−1 \ Uk−1, and move to stage k.1.

Stage k.t (t≥1 ). Let Gt
k = G∗(µt−1

k , Ik):

• If there is one or more cycles at Gt
k, solve one of the cycles at Gt

k, for example,

φ; let µtk = φ ◦ µt−1
k , λtk as in Step (k.1) of the SETC algorithm and move to

Stage k.(t+ 1).

• If there is no cycle at Gt
k, let (µk, λk) = (µt−1

k , λt−1
k ) and let Uk be the set of

underdemanded schools at (µt−1
k , λt−1

k ), and move to Step k + 1.

Theorem 2. Under fully transferable characteristics, the EADA-SETC algorithm selects

the extended matching (µ, λ), where µ is the EADA matching.
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5 Conclusions

In this paper, we generalize the school choice problem by defining school priorities in

terms of (transferable) student characteristics. We define a family of algorithms – the

Student Exchange with Transferable Characteristics (SETC) class– which start with an

(ex-post) stable extended matching and produce (ex-post) stable extended matchings that

are not Pareto dominated by other (ex-post) stable extended matchings. Moreover, any

constrained efficient extended matching that Pareto improves upon a stable extended

matching can be obtained via an algorithm in the SETC class. Finally, we show that an

algorithm in the SETC class produces a matching that is consistent with the matching of

the Kesten (2010) EADA algorithm when school extended priorities are fully transferable.

Although the focus of this work has been on school choice, our model applies to the

allocation of any object under priorities as long as those priorities are based on (multiple)

individual characteristics. Recent research on the allocation of medical resources in the

context of triage has proven the possibilities of integrating ethical values into the fair

allocation of a single scarce resource by reserving part of the resource capacity for certain

groups of individuals (Pathak et al., 2020). Our work provides techniques that facilitate

Pareto improvements on fair allocations when there is more than one type of object,

ethical considerations may be relaxed, and transfers of characteristics are allowed.

6 Proofs

We present separately the proofs of necessity and sufficiency sides of Theorem 1, and then

the proofs of the remaining results.

6.1 Proof of Theorem 1 “if” part

Although Theorem 1 refers specifically to the application of SETC algorithms to the

SOSEM, the analysis can be carried out from any arbitrary (ex-post) stable extended

matching.

For a given problem (I, S, (Ri)i∈I , ω, (�s)s∈S, (qs)s∈S) and a n(ex-post) stable extended

matching (µ0, λ0) consider an algorithm in the SETC class. Let K be the last step of the
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algorithm starting by (µ0, λ0), and for each k ∈ {1, . . . , K}, let (µk, λk) be the extended

matching selected by the algorithm at step k. A cycle is solved at each step of the

algorithm, which implies that the students in the cycle are better off and no student is

worse off at the new matching obtained by solving the cycle. Thus, for each k ≥ 1, µk

Pareto dominates µk−1. Moreover, if student j is not involved in any improvement cycle

at Step k, then D̃(µk,λk)(j) ⊆ D̃(µk−1,λk−1)(j). Hence, if i points to j in G(µk−1, λk−1) and

both students are not involved in an improvement cycle at Step k then i points to j in

G(µk, λk).

Lemma 1. Each extended matching obtained by a SETC algorithm is stable.

Proof. Let (µk, λk} be the extended matching obtained at Step k ∈ {0, . . . , K − 1}. We

prove the result by induction on k. The initial extended matching (µ0, λ0) is stable.

Fairness. Assume that (µk−1, λk−1) is fair under λk−1. Take any pair of students (i, j)

such that µk(j) Pi µk(i). At each step of the algorithm, each student is either better off

(she is in a solved cycle) or she is assigned to the same school as in the previous step.

Let φk denote the improvement cycle solved in step k. Assume first that j is not involved

in the cycle φk. Since µk(j) Pi µk(i), µk−1(j) Pi µk−1(i) and i ∈ D̃(µk−1,λk−1)(j). Then,

by fairness of (µk−1, λk−1), (j, λµk−1(j)(j)) �µk−1
(i, λµk−1(j)(i)). Since j is not involved

in φk, λ
µk−1(j)(j) = λµk(j)(j). Since i ∈ D̃(µk,λk)(j), λ

µk−1(j)(i) = λµk(j)(i). Therefore

(j, λµk(j)(j)) �µk(j) (i, λµk(j)(i)). Assume now that j is involved in φk. Let j′ ∈ I be such

that j′j ∈ φk. Hence, µk−1(j′) Pi µk−1(i), i ∈ D̃(µk,λk)(j
′), and λµk−1(j′)(i) = λµk(j′)(i).

Since j′j ∈ φk, (j,max{λµk−1(j′)
k−1 (j′), λ

µk−1(j)
k−1 �µk−1(j′) (i, λµk−1(j′)(i)), and (j, λµk(j)(j)) �µk(j)

(i, λµk(j)(i)). Since i, j are arbitrary, (µk, λk) is fair under λk.

Individual Rationality. Since µ0 is individually rational, and each student is never

worse off after each step of the algorithm, the µK is individually rational.

Non-Wastefulness. The initial match µ0 is non-wasteful. At each step students are

assigned to better schools swapping their positions at schools, hence #µ−1
k (s) remains

constant at any step of the algorithm. Assume school s has an empty slot at step k,

then the school s has an empty slot at step 0. Since µ0 is non-wasteful and individually

rational, for each student i with µ0(i) 6= s, µ0(i) Pi s. Since for each i, µk(i) Ri µ0(i),

µk(i) Ri s, and (µk, λk) is non-wasteful.
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Lemma 2. For each stable extended matching (µ, λ) and j ∈ I, X(µ,λ)(j) ⊆ µ(µ−1(j))\{j}
if and only if D̃(µ,λ)(j) = {∅}.

Proof. If D̃(µ,λ)(j) = {∅}, since D(µ,λ)(j) = µ(µ−1(j)) and X(µ,λ)(j) ⊆ D(µ,λ)(j), the

result is immediate. On the other hand, if D̃(µ,λ)(j) 6= {∅}, then by completeness and

transitivity of school priorities there is i ∈ D̃(µ,λ)(j) such that for each i′ ∈ D̃(µ,λ)(j),

(i, λµ(j)(i)) %µ(j) (i′, λµ(j)(i′). By monotonicity of priorities, (i,max{λµ(j)(i), λµ(j)(i)}) �µ(j)

(i, λµ(j)(i)). Therefore, µ(i) 6= µ(j) and i ∈ X(µ,λ)(j).

Lemma 3. Let (µ, λ) and (η, λ′) be (ex-post) stable extended matchings such that µ

Pareto dominates η. For each s ∈ S, #µ−1(s) = #η−1(s).

Proof. Let N = {i ∈ I : µ(i) Pi η(i)}. Since µ Pareto dominates η, for each j ∈ I \ N ,

µ(j) = η(j). Consider school s and assume that #(N ∩ µ−1(s)) > #(N ∩ η−1(s)). This

implies that #η−1(s) < qs. For each i ∈ N ∩ µ−1(s), µ(i) = s Pi η(i), which contradicts

η non-wastefulness. Hence, #(N ∩ µ−1(s)) ≤ #(N ∩ η−1(s)). Finally, assume to the

contrary there is s such that the strict inequality holds. Summing up the inequalities

across schools, the number of students in N who are assigned to some school in matching

η is larger than the number of students in N that are assigned to some school in matching

µ. Hence there is a student i ∈ N such that η(i) ∈ S, and µ(i) = {i}. Since η is a

individually rational matching, η(i) Pi µ(i) which contradicts the definition of N .

Lemma 4. An extended matching obtained by an SETC algorithm is constrained efficient.

Proof. Let (µ, λ) be an extended matching obtained by an SETC algorithm. By Lemma

1, (µ, λ) is (ex-post) stable. We show that there is no (ex-post) stable extended matching

(ν, λ′) such that ν Pareto dominates µ. Assume to the contrary, that (ν, λ′) is an (ex-post)

stable extended matching and ν dominates µ. By the definition of the SETC algorithms,

there is no improvement cycle in the graph G(µ, λ). There are two cases:

Case 1. For each j ∈ I D̃(µ,λ) = {∅}. Then for each ∈ I, X(µ,λ)(j) ⊆ µ−1(j) \ {j}. Thus

each student is assigned to her best school at µ and ν does not Pareto dominate µ

Case 2. There are chains in G(µ, λ) involving students who would like to change her

assigned school, but there is no cycle. This implies that there are students who are

only pointed by the students assigned to the same school.
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Assume we are in Case 2. Since there is no improvement cycle, there is a set of students

who are not pointed by any other student in G(µ, λ). Let I1 = {i | D̃(µ,λ)(i) = ∅}. Let

i1 ∈ I1 and s1 = µ(i1). Note that for each j ∈ µ(s1), D̃(µ,λ)(j) = ∅ and µ(s1) ⊆ I1

Since ν Pareto dominates µ, there does not exist any j′ ∈ I, such that µ(j′) 6= s1 and

ν(j′) = s1. Thus ν−1(s1) ⊆ µ−1(s1). By Lemma 3, #µ−1(s1) = #ν−1(s1) and we get

µ−1(s1) = ν−1(s1). Since i1 was arbitrary, this holds for each s such that µ−1(s)∩ I1 6= ∅.

Next, since there is no improvement cycle in G(µ, λ), then there is at least a student

in I \ I1 such that she is only pointed by students in I1. Otherwise, there would be an

improvement cycle or no improvement chains (Case 1). Let I2 = {i | D̃(µ,λ)(i) ⊆ I1} \ I1

be the set of such students. Let i2 ∈ I2 and s2 = µ(i2). We first show that there is no

j with µ(j) 6= s2 and ν(j) = s2. Assume to the contrary and since ν Pareto dominates

µ, s2 Pj µ(j) and thus, j ∈ D̃(µ,λ)(i2). Nevertheless, by definition i2 is only pointed

by students in I1. By the previous paragraph, for each j ∈ I1, µ(j) = ν(j). Hence,

ν−1(s2) ⊆ µ−1(s2). By Lemma 3, #µ−1(s2) = #ν−1(s2), and therefore µ−1(s2) = ν−1(s2).

We can continue applying the same argument iteratively, to conclude that all students

in any improving chain in G(µ, λ) have the same assignment under µ and ν. The students

who are not in a chain in G(µ, λ), are contained in I1 and have the same assignment in

both µ and ν. We conclude that µ = ν and ν does not Pareto dominate µ.

6.2 Proof of Theorem 1 “only if” part

Let (µ0, λ0) a partially stable extended matching. We prove that each constrained efficient

matching that Pareto dominates (µ0, λ0) can be obtained by an algorithm in the SETC

class.

We use again the notion of improvement cycle without making reference to the (di-

rected) application graph associated with (µ, λ), G(µ, λ). The following lemma is a crucial

first step for the construction of improvement cycles.

Lemma 5. Let (µ, λ) and (ν, λ̄) be stable extended matchings such that ν Pareto dominates

µ. Then there exists a set of disjointed improvement cycles Γ = {γ1, . . . , γk} such that

ν = γk ◦ . . .◦γ1 ◦µ, and there is λ′′ obtained as in the definition of SETC such that (ν, λ′′)

is stable extended matching.
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Proof. Let N ⊆ I be the set of students who strictly prefer their assignment under ν to

the assignment under µ or such that λ(i) 6= λ′(i). Partition the set N in three disjointed

sets N = N1 ∪ N2 ∪N3. Define

N1 ≡ {i ∈ N | µ(i) = ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N2 ≡ {i ∈M | µ(i) 6= ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N3 ≡ {i ∈ N | µ(i) 6= ν(i) & λ̄ν(i)(i) = λν(i)(i)}.

Let m = #N and index the students in N in such that for each j, j′, j′′ ∈ {1, . . . ,m}
ij ∈ N1, ij′ ∈ N2, ij′′ ∈ N3 if and only if j < j′ < j′′. Let G̃[(µ, λ), (ν, λ′)] = (N,E) be a

directed graph such that the edges E ⊆ N ×N are constructed in the following way:

• For each ij ∈ N1, ij points l if and only if λ̄µ(ij)(ij) = λµ(ij)(l).

• For each ij ∈ N2, ij points l if and only if λ̄ν(ij)(ij) = λν(ij)(l).

• For each ij ∈ N3, ij points an arbitrary student in l ∈ N such that l has not been

pointed by any ij′ with j′ < j and µ(l) = ν(ij).
15

In the graph G̃[(µ, λ), (ν, λ̄)], each student is pointed by a unique student and points

to a unique student in N . Since N is finite, each student is in a cycle and no two cycles

intersect. By construction, each of those cycles is an improvement cycle over µ and the

extended matching (ν, λ̄) is obtained solving these cycles in any order.

Lemma 6. Let (µ, λ) be an (ex-post) stable and (ν, λ̄) a (ex-post) stable reshuffling of

(µ, λ) such that ν Pareto dominates µ, then there exists a sequence of cycles (γ1, . . . , γk)

such that:

• γ1 appears in G(µ, λ).

• For each k′ ∈ {2, . . . , k}, γk′ in G(γk′−1 ◦ . . . ◦ γ1 ◦ (µ, λ)).

• γk ◦ γk−1 ◦ . . . ◦ γ1 ◦ (µ, λ).

Proof. By Lemma 5, we can construct a set of improvement cycles Φ = {φ1, . . . , φq}. The

result is trivial in the case where all the cycles in Φ appear in G(µ, λ): it follows that there

are disjointed cycles in G(µ, λ) and solving them in any order leads to ν and to some λ′

15Note that since (ν, λ̄) is a reshuffling of (µ, λ) such a student l exists for each ij ∈ N3.
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such that (ν, λ′) is an (ex-post) stable reshuffling of (µ, λ). To prove the alternative case,

we assume that none of the cycles in φ appears in G(µ, λ). This assumption is without

loss of generality because of the following observation. If a cycle φ ∈ Φ appears in G(µ, λ),

then this cycle is solved first and µ′ = φ ◦ µ is obtained. If another cycle φ′ ∈ Φ also

appears in G(µ′, λ∗), by the fact that all the cycles in Φ are disjointed and that if there

are two students forming a link in G(µ, λ), and those students do not belong to φ, then

the link also appears in G(µ′, λ∗). Following this logic, whenever a subset of cycles Φ

appear in G(µ, λ), these cycles are solved first, and we focus on the case where none of

the improvement cycles appear in G(µ, λ).

To show the existence of a cycle in G(µ, λ) first we prove that for any φ ∈ Φ and any

ij ∈ φ, there exists some k ∈ I such that kj ∈ G(µ, λ) and lk ∈ φ′ for some l ∈ I and

φ′ ∈ Φ. Consider an arbitrary φ ∈ Φ and ij ∈ φ.

• If i ∈ X(µ,λ)(j), then ij ∈ G(µ, λ) by construction. Moreover, i is a part of φ, which

implies there exists l ∈ I with li ∈ φ.

• If i /∈ X(µ,λ)(j), there exists a student i′ such that i′ ∈ D̃(µ,λ)(j) and (i′, λµ(j)(i′)) �µ(j)

(i,max{λµ(j)(i), λµ(j)(j)}) %µ(j) (i, λµ(j)(i)). Let k be, between those students,

one such that (k,max{λµ(j)(k), λµ(j)(j)}) �µ(j) (k′,max{λµ(j)(k′), λµ(j)(j)}) for each

k′ ∈ Dµ,λ)(j).
16 Note that k ∈ X(µ,λ)(j), and therefore kj ∈ G(µ, λ). Finally, we

check that k is in an improvement cycle in Φ. That is, there is φ′ ∈ Φ such that

lk ∈ φ′ for some l ∈ I. Assume to the contrary that µ(k) = ν(k), and µ(j) Pk

µ(k) = ν(k). Note that k ∈ X(µ,λ)(j), i /∈ X(µ,λ)(j), ν(i) = µ(j), and λ̄µ(j)(i) =

max{λµ(j)(i), λµ(j)(j)}). Since (k, λµ(j)(k)) �µ(j) (i,max{λµ(j)(i), λµ(j)(j)}), this is

a contradiction, since (ν, λ̄) is (ex-post) stable. Thus, ν(k) Pk µ(k), which implies

that k is in an improvement cycle in Φ.

Thus, for any student j who is in an improvement cycle ϕ ∈ Φ, there exists another

student k such that kj ∈ G(µ, λ) and k is in an improvement cycle φ′ ∈ Φ. Since the

set of students in improvement cycles is finite, and each student is pointed at least by

another student in N , and there exists a cycle γ1 in G(µ, λ). Note that for each ij ∈ φ
such that ij /∈ γ1, then ij /∈ G(µ, λ), and i /∈ X(µ,λ)(j).

16By our definition of extended priorities the existence of such a student k is ensured. See Remark 1.
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We next show that the matching γ1 ◦ µ Pareto dominates µ and it is weakly Pareto

dominated by ν. Since γ1 ◦ µ solves a cycle in G(µ, λ) clearly γ1 ◦ µ Pareto dominates µ.

Hence, we focus on proving that ν (weakly) Pareto dominates γ1 ◦ µ. For any kj ∈ γ1

such that (γ1 ◦ µ)(k) 6= µ(k) note that (γ1 ◦ µ)(k) = µ(j).

• If kj ∈ φ for some φ ∈ Φ, then ν(k) = µ(j).

• If kj /∈ φ for any φ ∈ Φ, we claim that ν(k) Rk µ(j). Suppose that µ(j) Pk

ν(k), that is, k ∈ D̃(ν,λ̄)(j). Consider the student i ∈ I such that ij ∈ φ for

some φ ∈ Φ, so ν(i) = µ(j). By the definition of γ1, ij /∈ G(µ, λ). implies

λ̄µ(j)(i) = max{λµ(j)(i), λµ(j)(j)}). Since kj ∈ γ1, kj ∈ G(µ, λ) and ij /∈ G(µ, λ),

(k, λµ(j)(k)) �µ(k) (i,max{λµ(j)(i), λµ(j)(j)}), which is a contradiction because (ν, λ̄)

is (ex-post) stable.

Thus, under the matching γ1 ◦µ, each student in γ1 is better off than under the matching

µ and worse off than under the matching ν. Each remaining student is assigned to the

same school to which she’s assigned under µ which implies that the matching γ1 ◦ µ
Pareto dominates µ and is weakly Pareto dominated by ν. Let λ1 be the allocation of

characteristics obtained by solving the cycle γ1 according to the definition of the SETC

algorithm. By the arguments in Lemma 1, (γ1 ◦ µ, λ1) is (ex-post) stable. If the extended

matching (γ1 ◦ µ) is equivalent to ν the proof is complete. If not we can use the same

argument inductively. By Lemma 6, there is a set of distinct improvement cycles, such

that the matching ν is obtained by solving these cycles over γ1 ◦ µ solving at each stage

a cycle that appears in the graph defined by the SETC algorithm.

6.3 Proof of the Remaining Results

Proof of Proposition 1. Let A be an algorithm in the SETC, define the SOTC mechanism

Ψ that for each profile of students’ preferences selects the matching obtained through the

application of A at that preference profile. By Theorem 1, for each preference profile

the extended matching selected by Ψ is (ex-post) stable and constrained efficient. For

each P ∈ P , Ψ selects an extended matching (µ, λ) such that µ Pareto dominates µSω. By

Abdulkadiroğlu et al. (2009), the SOSEM is in the Pareto frontier of the set of mechanisms

that satisfy strategy-proofness. Hence, Ψ violates strategy-proofness.
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Proof of Proposition 2. Let s = µ(j). Since ∈ D̃(µ,λ)(j), s Pi µ(i). Since (µ, λ) is (ex-

post) stable, for each j′ 6= i such that s Pj′ µ(j′), (j, λs(j)) �s (j′, λs(j′)). Therefore,

since s extended priorities are fully transferable, (i,max{λs(i), λs(j)}) �s (j′, λs(j′)) and

i ∈ X(µ,λ)(j).

Proof of Theorem 2. Note first that by Proposition 2, for each k and t, Ĝt
k ⊆ G(µ, λ).

Thus, since (µ0, λ0) is (ex-post) stable and by the arguments in Lemma 1, (µtk, λ
t
k) is also

(ex-post) stable.

Note also that since for each k, t, and j ∈ Ik, there is at most another student i such

that ij ∈ Ĝt
k. This fact implies that if for some k and t there are two cycles those cycles

are disjointed (φ, φ′ ∈ Ĝt
k, φ ∩ φ′ = ∅).

If U0 = {∅} the algorithm stops immediately, (µSOω , ω) is constrained efficient, and

µSOω coincides with the outcome of the EADA algorithm. If U0 6= {∅}, note that (µ0, λ0)

is (ex-post) stable but it is not constrained efficient. We prove the result by comparing

the graph Ĝ0
1 defined at Step 1 of the algorithm with the (directed) application graph

associated with (µ0, λ0) obtained for a school choice problem with alternative students’

preferences and extended priorities.

Consider the school choice problem (I, S, (R∗i )i∈I , ω, (�∗s)s∈S, (qs)s∈S). such that for

each i ∈ I1, R∗i = Ri and for each j /∈ R∗j is such that for each s ∈ S \ {µ0(j)},
µ0(j) Pj s, and for each i, j ∈ I and each allocation of transferable characteristics λ,

(i, λs(i)) %∗s (j, λs(j)) if and only if (i, ωs(i)) %∗s (j, ωs(j)). That is, students assigned to

underdemanded schools under µ0 consider that school as the best possible alternative, and

transferable characteristics are irrelevant for school priorities. For each extended matching

(µ, λ), let’s denote by G∗(µ, λ) the (directed) application graph associated with (µ, λ) for

the problem (I, S, (R∗i )i∈I , ω, (�∗s)s∈S, (qs)s∈S) Note that G∗(µ0, λ0) coincides with Ĝ0
1. By

Theorem 1, starting with an (ex-post) stable extended matching, the SETC algorithm

obtains a constrained efficient extended matching. Note that under the new priorities and

preferences, since the transferable characteristics are irrelevant, the student-proposing DA

algorithm obtains the unique constrained efficient matching (Gale and Shapley, 1962).

This fact also implies that the order in which the cycles are solved at any stage 1.t is

irrelevant and a unique extended matching (µ1, λ1) is obtained, and µ1 coincides with the

outcome of the student-proposing DA algorithm under the preferences (R∗i )i∈I . Hence,
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for each t ≥ 1, G∗(µt, λt) also coincides with Ĝt
1. We can repeat the argument for the

subsequent steps, until for some k ≥ 0, Uk = ∅, which completes the proof.
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