Publication:
Reabsorción radicular fisiológica de los molares temporales en niños con osteogénesis imperfecta medicados con bifosfonatos

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2019
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
Trabajo Fin de Master encuadrado en la línea de investigación: Desarrollo orofacial y protocolos de atención en niños con necesidades especiales.
Keywords
Citation
1. Marks SC, Gorski JP, Wise GE. The mechanisms and mediators of tooth eruption-models for developmental biologists. Int J Dev Biol. 1995 Feb;39(1):223–30. 2. Wise GE, Marks SC, Cahill DR. Ultrastructural features of the dental follicle associated with formation of the tooth eruption pathway in the dog. J Oral Pathol. 1985 Jan;14(1):15–26. 3. Wise GE. Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 2009 May;12(2):67–73. 4. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013 Oct;92(10):860–7. 5. Luan X, Ito Y, Dangaria S, Diekwisch TGH. Dental Follicle Progenitor Cell Heterogeneity in the Developing Mouse Periodontium. Stem Cells Dev [Internet]. 2006 Aug [cited 2019 Mar 23];15(4):595–608. Available from: https://www.liebertpub.com/doi/10.1089/scd.2006.15.595 6. Marks SC, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. 1984;29(4):311–22. 7. Cahill DR, Marks SC. Tooth eruption: evidence for the central role of the dental follicle. J Oral Pathol. 1980 Jul;9(4):189–200. 8. Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. - PubMed - NCBI [Internet]. [cited 2019 Jan 2]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17184234 9. Wise GE, Frazier-Bowers S, D’Souza RN. Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biol. 2002;13(4):323–34. 10. Wise GE, Yao S, Odgren PR, Pan F. CSF-1 Regulation of Osteoclastogenesis for Tooth Eruption. J Dent Res [Internet]. 2005 Sep [cited 2018 Dec 27];84(9):837. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1630495/ 11. Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008 May;87(5):414–34. 12. Bosshardt DD, Schroeder HE. Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec. 1996 Jun;245(2):267–92. 13. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen L-S, Arzate H, et al. Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn Off Publ Am Assoc Anat. 2003 Dec;228(4):651–63. 14. Moxham BJ, Berkovitz BK. The effects of root transection on the unimpeded eruption rate of the rabbit mandibular incisor. Arch Oral Biol. 1974 Oct;19(10):903–9. 15. Berkovitz BK, Thomas NR. Unimpeded eruption in the root-resected lower incisor of the rat with a preliminary note on root transection. Arch Oral Biol. 1969 Jul;14(7):771–80. 16. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13625–30. 17. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet Lond Engl. 2004 Jul 10;364(9429):149–55. 18. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5807– 12. 19. Yao S, Pan F, Prpic V, Wise GE. Differentiation of Stem Cells in the Dental Follicle. J Dent Res [Internet]. 2008 Aug [cited 2019 Jan 13];87(8):767–71. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553250/ 20. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008 Feb;34(2):166–71. 21. Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res. 2008 Aug;87(8):767–71. 22. Luan X, Ito Y, Dangaria S, Diekwisch TGH. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev. 2006 Aug;15(4):595–608. 23. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol J Int Soc Matrix Biol. 2005 Apr;24(2):155–65. 24. Sowmya S, Chennazhi KP, Arzate H, Jayachandran P, Nair SV, Jayakumar R. Periodontal Specific Differentiation of Dental Follicle Stem Cells into Osteoblast, Fibroblast, and Cementoblast. Tissue Eng Part C Methods. 2015 Oct;21(10):1044–58. 25. Marks SC, Cahill DR. Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. J Oral Pathol. 1987 Apr;16(4):164–9. 26. Marks SC, Cahill DR, Wise GE. The cytology of the dental follicle and adjacent alveolar bone during tooth eruption in the dog. Am J Anat. 1983 Nov;168(3):277–89. 27. Wise GE, Marks SC, Cahill DR. Ultrastructural features of the dental follicle associated with formation of the tooth eruption pathway in the dog. J Oral Pathol Med [Internet]. 1985 [cited 2018 Dec 27];14(1):15–26. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0714.1985.tb00461.x 28. Wise GE, Fan W. Changes in the tartrate-resistant acid phosphatase cell population in dental follicles and bony crypts of rat molars during tooth eruption. J Dent Res. 1989 Feb;68(2):150–6. 29. Wise GE, Lin F, Zhao L. Transcription and translation of CSF-1 in the dental follicle. J Dent Res. 1995 Sep;74(9):1551–7. 30. Volejnikova S, Laskari M, Marks SC, Jr, Graves DT. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Am J Pathol [Internet]. 1997 May [cited 2018 Dec 27];150(5):1711. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858191/ 31. Wise GE, Huang H, Que BG. Gene expression of potential tooth eruption molecules in the dental follicle of the mouse. Eur J Oral Sci. 1999 Dec;107(6):482–6. 32. Que BG, Wise GE. Colony-stimulating factor-1 and monocyte chemotactic protein-1 chemotaxis for monocytes in the rat dental follicle. Arch Oral Biol. 1997 Dec;42(12):855–60. 33. Liu D, Wise GE. Expression of endothelial monocyte-activating polypeptide II in the rat dental follicle and its potential role in tooth eruption. Eur J Oral Sci. 2008 Aug;116(4):334–40. 34. Wise GE, Lumpkin SJ, Huang H, Zhang Q. Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res. 2000 Dec;79(12):1937–42. 35. Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992 Oct 5;267(28):20239–47. 36. Liu D, Wise GE. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis. Bone [Internet]. 2007 Aug [cited 2018 Dec 28];41(2):266–72. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2023965/ 37. Liu D, Yao S, Pan F, Wise GE. Chronology and regulation of gene expression of RANKL in the rat dental follicle. Eur J Oral Sci. 2005 Oct;113(5):404–9. 38. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999 Dec 20;190(12):1741– 54. 39. Stanley ER, Guilbert LJ, Tushinski RJ, Bartelmez SH. CSF-1--a mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem. 1983;21(2):151–9. 40. Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, et al. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest. 1993 Jan;91(1):257–63. 41. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999 Jan 28;397(6717):315–23. 42. Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14303–8. 43. Odgren PR, Kim N, MacKay CA, Mason-Savas A, Choi Y, Marks SC. The role of RANKL (TRANCE/TNFSF11), a tumor necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue. Connect Tissue Res. 2003;44 Suppl 1:264–71. 44. Kim Y, Shin J, Li R, Cheong C, Kim K, Kim S. A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem. 2000 Sep 1;275(35):27062–8. 45. Wise GE, Yao S. Expression of vascular endothelial growth factor in the dental follicle. Crit Rev Eukaryot Gene Expr. 2003;13(2–4):173–80. 46. Yao S, Liu D, Pan F, Wise GE. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis. Arch Oral Biol. 2006 Jul;51(7):596–602. 47. Wise GE, Yao S. Expression of tumour necrosis factor-alpha in the rat dental follicle. Arch Oral Biol. 2003 Jan;48(1):47–54. 48. Sicher H. Tooth Eruption: Axial Movement of Teeth with Limited Growth. J Dent Res [Internet]. 1942 Aug 1 [cited 2019 Jan 2];21(4):395–402. Available from: https://doi.org/10.1177/00220345420210040901 49. Cahill DR. The histology and rate of tooth eruption with and without temporary impaction in the dog. Anat Rec. 1970 Feb;166(2):225–37. 50. Wise GE, Yao S, Henk WG. Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat N Y N. 2007 Aug;20(6):632–9. 51. Bartlett JD, Zhou Z, Skobe Z, Dobeck JM, Tryggvason K. Delayed tooth eruption in membrane type-1 matrix metalloproteinase deficient mice. Connect Tissue Res. 2003;44 Suppl 1:300–4. 52. Beertsen W, Holmbeck K, Niehof A, Bianco P, Chrysovergis K, Birkedal-Hansen H, et al. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. Eur J Oral Sci. 2002 Dec;110(6):445–51. 53. Wise GE, Ding D, Yao S. Regulation of secretion of osteoprotegerin in rat dental follicle cells. Eur J Oral Sci. 2004 Oct;112(5):439–44. 54. Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci. 2007 Mar;49(1):1–12. 55. Moorrees CF, Fanning EA, Hunt EE. FORMATION AND RESORPTION OF THREE DECIDUOUS TEETH IN CHILDREN. Am J Phys Anthropol. 1963;21(2):205–13. 56. Fanning EA. The relationship of dental caries and root resorption of deciduous molars. Arch Oral Biol [Internet]. 1962 Sep 1 [cited 2019 Feb 3];7(5):595–601. Available from: http://www.sciencedirect.com/science/article/pii/0003996962900663 57. O’Meara WF, Knott VB. Serial Data on Primary Canine Root Resorption and Gingival Emergence of Permanent Successors. Angle Orthod [Internet]. 1967 Oct 1 [cited 2019 Feb 3];37(4):261–71. Available from: http://www.angle.org/doi/abs/10.1043/00033219%281967%29037%3C0261%3ASDOPCR%3E2.0.CO%3B2 58. Nanda RS. Root resorption of deciduous teeth in Indian children. Arch Oral Biol. 1969 Sep;14(9):1021–30. 59. Haavikko K. The physiological resorption of the roots of deciduous teeth in Helsinki children. Proc Finn Dent Soc Suom Hammaslaakariseuran Toim. 1973 Jun;69(3):93–8. 60. Zadik D, Klein H, Eidelman E, Chosack A. Root resorption of primary molars: a radiographic study. ASDC J Dent Child. 1975 Apr;42(2):140–2. 61. Prove SA, Symons AL, Meyers IA. Physiological root resorption of primary molars. J Clin Pediatr Dent. 1992;16(3):202–6. 62. Haralabakis NB, Yiagtzis SC, Toutountzakis NM. Premature or delayed exfoliation of deciduous teeth and root resorption and formation. Angle Orthod. 1994;64(2):151–7. 63. Saka H, Kikuchi A, Ide Y. A morphological study of root resorption of the maxillary first deciduous molars. Bull Tokyo Dent Coll. 1996 Aug;37(3):137–44. 64. Bjerklin K, Bennett J. The long-term survival of lower second primary molars in subjects with agenesis of the premolars. Eur J Orthod. 2000 Jun;22(3):245–55. 65. Peretz B, Nisan S, Herteanu L, Blumer S. Root resorption patterns of primary mandibular molars and location of the premolar successors: a radiographic evaluation. Pediatr Dent. 2013 Oct;35(5):426–9. 66. Ten Cate AR, Anderson RD. An ultrastructural study of tooth resorption in the kitten. J Dent Res. 1986 Aug;65(8):1087–93. 67. Sasaki T, Motegi N, Suzuki H, Watanabe C, Tadokoro K, Yanagisawa T, et al. Dentin resorption mediated by odontoclasts in physiological root resorption of human deciduous teeth. Am J Anat. 1988 Dec;183(4):303–15. 68. Oshiro T, Shibasaki Y, Martin TJ, Sasaki T. Immunolocalization of vacuolar-type H+ATPase, cathepsin K, matrix metalloproteinase-9, and receptor activator of NFkappaB ligand in odontoclasts during physiological root resorption of human deciduous teeth. Anat Rec. 2001 01;264(3):305–11. 69. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3597– 602. 70. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997 Apr 18;89(2):309–19. 71. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res. 2001 Mar;80(3):887–91. 72. Boabaid F, Berry JE, Koh AJ, Somerman MJ, McCcauley LK. The role of parathyroid hormone-related protein in the regulation of osteoclastogenesis by cementoblasts. J Periodontol. 2004 Sep;75(9):1247–54. 73. Fujihara R, Usui M, Yamamoto G, Nishii K, Tsukamoto Y, Okamatsu Y, et al. Tumor necrosis factor-α enhances RANKL expression in gingival epithelial cells via protein kinase A signaling. J Periodontal Res. 2014 Aug;49(4):508–17. 74. Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem. 2001 Sep 28;276(39):36241–50. 75. Castaneda B, Simon Y, Jacques J, Hess E, Choi Y-W, Blin-Wakkach C, et al. Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-κB (RANK). J Cell Physiol [Internet]. 2011 Jan [cited 2019 Mar 18];226(1):74– 85. Available from: http://doi.wiley.com/10.1002/jcp.22305 76. Knott VB, O’Meara WF. Serial data on primary incisor root resorption and gingival emergence of permanent successors. Angle Orthod. 1967 Jul;37(3):212–22. 77. Fanning EA. Most cited: number 1. A longitudinal study of tooth formation and root resorption. N Z Dent J. 2008 Jun;104(2):60–1. 78. HM FA and L. A radiographic study of estimating age by deciduous mandibular canine and molar root resorption. - PubMed - NCBI [Internet]. [cited 2019 Feb 9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25847543 79. Haavikko K, Mattila K. The reliability of orthopantomograms in determining the stage of resorption of deciduous teeth. Proc Finn Dent Soc Suom Hammaslaakariseuran Toim. 1973 Jun;69(3):88–92. 80. Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR, et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med. 2006 Dec 28;355(26):2757–64. 81. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006 Oct 20;127(2):291–304. 82. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011 Jun 14;7(9):540–57. 83. Byers, P. H. (1993) Osteogenesis imperfecta, in Connective Tissue and Its Heritable Disorders (Royce, P. M. and Steinman. 84. Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013 Aug;98(8):3095–103. 85. Osteogénesis Imperfecta: Nuevas Perspectivas. Rev Esp Endocrinol Pediátrica [Internet]. 2013 May [cited 2019 Jan 11];(4 Suppl). Available from: http://www.endocrinologiapediatrica.org/modules.php?name=articulos&idarticulo=160&idlang art=ES 86. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr;16(2):101–16. 87. Marini JC, Hopkins E, Glorieux FH, Chrousos GP, Reynolds JC, Gundberg CM, et al. Positive Linear Growth and Bone Responses to Growth Hormone Treatment in Children With Types III and IV Osteogenesis Imperfecta: High Predictive Value of the Carboxyterminal Propeptide of Type I Procollagen. J Bone Miner Res [Internet]. 2003 [cited 2019 Jan 11];18(2):237–43. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1359/jbmr.2003.18.2.237 88. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000 Jun;26(6):581–9. 89. Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002 Jan;17(1):30–8. 90. Smith R. The brittle bone syndrome: an update. Curr Orthop [Internet]. 1999 Jul 1 [cited 2019 Jan 12];13(3):218–22. Available from: http://www.sciencedirect.com/science/article/pii/S0268089099900063 91. Engelbert RH, Pruijs HE, Beemer FA, Helders PJ. Osteogenesis imperfecta in childhood: treatment strategies. Arch Phys Med Rehabil [Internet]. 1998 [cited 2019 Jan 12];79(12):1590– 4. Available from: https://www.narcis.nl/publication/RecordID/oai%3Apure.amc.nl%3Apublications%2F96883ebc -aa6a-4666-b940-2966766555c3 92. Guide to Osteogenesis Imperfecta [Internet]. studylib.net. [cited 2019 Jan 11]. Available from: https://studylib.net/doc/18848209/guide-to-osteogenesis-imperfecta 93. Ríos Ródenas M, Ríos Ródenas M. La unión craneocervical en el paciente con osteogénesis imperfecta [Internet] [info:eu-repo/semantics/doctoralThesis]. [Madrid]: Universidad Complutense de Madrid; 2016 [cited 2019 Jan 11]. Available from: https://eprints.ucm.es/37198/ 94. Marini J, Smith SM. Osteogenesis Imperfecta. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000 [cited 2019 Jan 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK279109/ 95. Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000 Sep;15(9):1650–8. 96. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic Administration of Pamidronate in Children with Severe Osteogenesis Imperfecta [Internet]. http://dx.doi.org/10.1056/NEJM199810013391402. 2009 [cited 2019 Jan 12]. Available from: https://www.nejm.org/doi/full/10.1056/NEJM199810013391402 97. Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2016;27(12):3427–37. 98. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007 Mar;28(3):209–21. 99. Shields ED, Bixler D, el-Kafrawy AM. A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol. 1973 Apr;18(4):543–53. 100. Chang P-C, Lin S-Y, Hsu K-H. The craniofacial characteristics of osteogenesis imperfecta patients. Eur J Orthod. 2007 Jun;29(3):232–7. 101. Shilpa PS, David CM, Kaul R, Sanjay CJ, Narayan BKR. Brittle teeth with brittle bone in a family for four generations: Case report and literature review. Contemp Clin Dent [Internet]. 2012 [cited 2019 Jan 12];3(2):197–201. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425106/ 102. O’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Feb;87(2):189–96. 103. Libman RH. Anesthetic considerations for the patient with osteogenesis imperfecta. Clin Orthop [Internet]. 1981 Sep [cited 2019 Jan 12];(159):123–5. Available from: http://europepmc.org/abstract/MED/7285448 104. Lund A, Muller J, Skovby F. Anthropometry of patients with osteogenesis imperfecta. Arch Dis Child [Internet]. 1999 Jun [cited 2019 Jan 12];80(6):524–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1717948/ 105. Ben Amor IM, Roughley P, Glorieux FH, Rauch F. Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013 Sep;28(9):2001–7. 106. Antoniazzi F. Current and emerging treatments for the management of osteogenesis imperfecta. Ther Clin Risk Manag [Internet]. 2010 Aug [cited 2019 Jun 2];367. Available from: http://www.dovepress.com/current-and-emerging-treatments-for-the-management-ofosteogenesis-imp-peer-reviewed-article-TCRM 107. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998 Oct 1;339(14):947–52. 108. Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tatò L, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2005 May;20(5):758–63. 109. Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002 Nov;110(9):1293–9. 110. Shapiro JR, McCarthy EF, Rossiter K, Ernest K, Gelman R, Fedarko N, et al. The effect of intravenous pamidronate on bone mineral density, bone histomorphometry, and parameters of bone turnover in adults with type IA osteogenesis imperfecta. Calcif Tissue Int. 2003 Feb;72(2):103–12. 111. Russell RGG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007 Nov;1117:209–57. 112. Drake MT, Clarke BL, Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin Proc [Internet]. 2008 Sep [cited 2018 Nov 21];83(9):1032–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0025619611606071 113. Russell RGG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007 Nov;1117:209–57. 114. Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001 Dec;29(6):553–9. 115. Vasikaran SD. Bisphosphonates: an overview with special reference to alendronate. Ann Clin Biochem [Internet]. 2001 Nov 1 [cited 2018 Nov 21];38(6):608–23. Available from: http://acb.sagepub.com/lookup/doi/10.1258/0004563011901037 116. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000 Jun 15;88(12 Suppl):2961–78. 117. Bradaschia-Correa V, Moreira MM, Arana-Chavez VE. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats. Cell Tissue Res [Internet]. 2013 Jul [cited 2019 Mar 18];353(1):79–86. Available from: http://link.springer.com/10.1007/s00441-013-1623-9 118. Lehenkari PP, Kellinsalmi M, Näpänkangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ, et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol. 2002 May;61(5):1255–62. 119. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011 Jul;49(1):34–41. 120. Infection and Medication-related Osteonecrosis of the Jaw - H. Katsarelis, N.P. Shah, D.K. Dhariwal, M. Pazianas, 2015 [Internet]. [cited 2019 Mar 25]. Available from: https://journals.sagepub.com/doi/10.1177/0022034515572021 121. Russell RGG. Bisphosphonates: the first 40 years. Bone. 2011 Jul;49(1):2–19. 122. Castillo H, Samson-Fang L, American Academy for Cerebral Palsy and Developmental Medicine Treatment Outcomes Committee Review Panel. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009 Jan;51(1):17–29. 123. Shaw NJ. Management of osteoporosis in children. Eur J Endocrinol [Internet]. 2008 Dec 1 [cited 2018 Nov 21];159(suppl_1):S33–9. Available from: https://eje.bioscientifica.com/view/journals/eje/159/suppl_1/S33.xml 124. Bachrach LK, Ward LM. Clinical review 1: Bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab. 2009 Feb;94(2):400–9. 125. Kamoun-Goldrat A, Ginisty D, Merrer ML. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur J Oral Sci [Internet]. 2008 Jun [cited 2018 Nov 21];116(3):195–8. Available from: http://doi.wiley.com/10.1111/j.1600-0722.2008.00529.x 126. Bradaschia-Correa V, Massa LF, Arana-Chavez VE. Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res. 2007 Dec;330(3):475– 85. 127. Hodgson B. More about bisphosphonates. J Am Dent Assoc 1939. 2009 Jul;140(7):829– 30; discussion 830. 128. Hiraga T, Ninomiya T, Hosoya A, Nakamura H. Administration of the bisphosphonate zoledronic acid during tooth development inhibits tooth eruption and formation and induces dental abnormalities in rats. Calcif Tissue Int. 2010 Jun;86(6):502–10. 129. Bradaschia-Correa V, Massa LF, Arana-Chavez VE. Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res [Internet]. 2007 Nov 8 [cited 2018 Nov 21];330(3):475–85. Available from: http://link.springer.com/10.1007/s00441007-0499-y 130. Grier RL, Wise GE. Inhibition of tooth eruption in the rat by a bisphosphonate. J Dent Res. 1998 Jan;77(1):8–15. 131. Lézot F, Chesneau J, Battaglia S, Brion R, Castaneda B, Farges J-C, et al. Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies. Bone. 2014 Nov;68:146–52. 132. Bhatt RN, Hibbert SA, Munns CF. The use of bisphosphonates in children: review of the literature and guidelines for dental management. Aust Dent J. 2014 Mar;59(1):9–19. 133. Vuorimies I, Arponen H, Valta H, Tiesalo O, Ekholm M, Ranta H, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29–33. 134. Kamoun-Goldrat A, Ginisty D, Merrer ML. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta [Internet]. 2008 [cited 2018 Nov 21]. Available from: https://www.ingentaconnect.com/content/mksg/eos/2008/00000116/00000003/art00001 135. Kamoun‐Goldrat A, Ginisty D, Merrer ML. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur J Oral Sci [Internet]. 2008 [cited 2019 Jan 14];116(3):195–8. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1111/j.16000722.2008.00529.x 136. Malmgren B, Norgren S. Dental aberrations in children and adolescents with osteogenesis imperfecta. Acta Odontol Scand. 2002 Mar;60(2):65–71. 137. O’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Feb;87(2):189–96. 138. Eveleth PB, Tanner JM. Worldwide Variation in Human Growth by Phyllis B. Eveleth [Internet]. Cambridge Core. 1991 [cited 2019 Feb 3]. Available from: /core/books/worldwidevariation-in-human-growth/0E6E8B888E2F2B9F4F17112935BA1928 139. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000 Jun;26(6):581–9. .