¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Determination of the semion code threshold using neural decoders

Impacto

Downloads

Downloads per month over past year

Varona Angulo, Santiago and Martín Delgado, Miguel Ángel (2020) Determination of the semion code threshold using neural decoders. Physical review A, 102 (3). ISSN 2469-9926

[thumbnail of Martín Delgado Alcántara MÁ 125 LIBRE.pdf]
Preview
PDF
756kB

Official URL: http://dx.doi.org/10.1103/PhysRevA.102.032411




Abstract

We compute the error threshold for the semion code, the companion of the Kitaev toric code with the same gauge symmetry group Z(2). The application of statistical mechanical mapping methods is highly discouraged for the semion code, since the code is non-Pauli and non-Calderbank-Shor-Steane (CSS). Thus, we use machine learning methods, taking advantage of the near-optimal performance of some neural network decoders: multi-layer perceptrons and convolutional neural networks (CNNs). We find the values p(eff) = 9.5% for uncorrelated bit-flip and phase-flip noise, and p(eff) = 10.5% for depolarizing noise. We contrast these values with a similar analysis of the Kitaev toric code on a hexagonal lattice with the same methods. For convolutional neural networks, we use the ResNet architecture, which allows us to implement very deep networks and results in better performance and scalability than the multilayer perceptron approach. We analyze and compare in detail both approaches and provide a clear argument favoring the CNN as the best suited numerical method for the semion code.


Item Type:Article
Additional Information:

©2020 American Physical Society.
We thank G. Dauphinais for useful discussions at the early stage of this research. The authors thankfully acknowledge the resources from the supercomputer "Cierzo," HPC infrastructure of the Centro de Supercomputacion de Aragon (CESAR), and the technical expertise and assistance provided by BIFI (Universidad de Zaragoza). S.V. especially thanks Hector Villarrubia Rojo for computational resources and technical assistance. We acknowledge financial support from the Spanish MINECO grants MINECO/FEDER Projects No. FIS2017-91460-EXP and No. PGC2018-099169-B-I00FIS2018 and from CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM). The research of M.A.M.-D. has been partially supported by the U.S. Army Research Office through Grant No. W911NF-14-1-0103. S.V. thanks the support of a FPU MECD Grant.

Uncontrolled Keywords:Error correcting codes; Quantum
Subjects:Sciences > Physics
ID Code:62618
Deposited On:19 Oct 2020 11:16
Last Modified:19 Oct 2020 11:16

Origin of downloads

Repository Staff Only: item control page