
PHYSICAL REVIEW A 102, 032411 (2020)

Determination of the semion code threshold using neural decoders

S. Varona * and M. A. Martin-Delgado †

Departamento de Física Teórica, Universidad Complutense, 28040 Madrid, Spain

(Received 26 February 2020; accepted 25 August 2020; published 17 September 2020)

We compute the error threshold for the semion code, the companion of the Kitaev toric code with the same
gauge symmetry group Z2. The application of statistical mechanical mapping methods is highly discouraged for
the semion code, since the code is non-Pauli and non-Calderbank-Shor-Steane (CSS). Thus, we use machine
learning methods, taking advantage of the near-optimal performance of some neural network decoders: multi-
layer perceptrons and convolutional neural networks (CNNs). We find the values peff = 9.5% for uncorrelated
bit-flip and phase-flip noise, and peff = 10.5% for depolarizing noise. We contrast these values with a similar
analysis of the Kitaev toric code on a hexagonal lattice with the same methods. For convolutional neural
networks, we use the ResNet architecture, which allows us to implement very deep networks and results in
better performance and scalability than the multilayer perceptron approach. We analyze and compare in detail
both approaches and provide a clear argument favoring the CNN as the best suited numerical method for the
semion code.

DOI: 10.1103/PhysRevA.102.032411

I. INTRODUCTION

The robustness of quantum memories to external noise and
decoherence is a key aspect along the way to fault-tolerant
quantum computing. Topological properties of quantum sys-
tems have become a resource of great importance to construct
better and more robust quantum error correcting codes. The
Kitaev toric code is the simplest topological code yielding
a quantum memory [1,2]. It can be regarded as a simple
two-dimensional lattice gauge theory with Z2 gauge group.
In two dimensions, there is another lattice gauge theory with
the same gauge group but different topological properties: the
double semion model. The double semion model has been
thoroughly studied in the search for new topological orders in
strongly correlated systems, gapped, nonchiral, and based on
string-net mechanisms in two dimensions [3–5]. Although the
Kitaev and the double semion models share the same gauge
group, there are some remarkable differences between both.
For instance, braiding two elementary quasiparticle excita-
tions gives a ±1 phase in the Kitaev toric code, while in the
double semion model it yields a ±i phase factor, showing
anyonic statistics.

Topological orders can provide us with a great vari-
ety of new topological codes with non-Pauli stabilizers [6].
These new codes might be more appropriate for practical
implementation or have smaller overheads when performing,
for instance, non-Clifford gates. This strongly motivates the
search for new topological codes and their properties beyond
the usual toric and color codes. Recently, an error correcting
code based on the double semion model, the semion code,
was presented [7]. This code is topological and follows the
stabilizer formalism. However, in contrast to the Kitaev toric
code, it is not a Calderbank-Shor-Steane (CSS) code [8–10],

*svarona@ucm.es
†mardel@ucm.es

since both Pauli X and Z operators are present in the plaquette
operators, and it is not a Pauli code, since plaquette operators
cannot be expressed as a tensor product of Pauli matrices.

In order to characterize the performance and efficiency of
an error correcting code, the threshold value is one of the most
representative quantities quoted [2,11–13]. The threshold rep-
resents the physical error rate below which increasing the
distance of the code reduces the logical error rate. This error
rate separates two different regimes. For error rates below
threshold, larger codes translate into longer memory time and
lower logical error rate. Therefore, in this regime, it makes
sense to use error correction. In this work, we try to shed
some light on the threshold properties of the semion code and
compare it with the well-known toric code.

In the case of the Kitaev toric code, when considering Pauli
noise, the threshold is determined by mapping the system to
a statistical model, the random-bond two-dimensional (2D)
Ising model [2,11,12,14]. The threshold value corresponds
in this new system to the phase transition between the or-
dered and disordered phases. Nevertheless, this mapping is
extremely cumbersome in the semion code because of the
complex structure of the plaquette operators. Determining the
threshold in the case where Pauli noise affects a non-Pauli
code or non-Pauli noise affects a Pauli code needs a new
approach. We address this problem using machine learning
and neural networks [15–17].

Machine learning, and in particular neural networks, has
been proposed in recent years as a solution for efficiently de-
coding stabilizer codes [18–31]. Although there are different
approaches to the decoding problem using neural networks,
one of the most common consists in applying a very sim-
ple decoder to the code. Afterwards the neural network tries
to predict, given the syndrome measurement, the logical er-
ror produced by the simple decoder, so that this can be in
turn corrected. This approach has been shown to produce
near-optimal results for topological codes [32,33]. Thus, the

2469-9926/2020/102(3)/032411(11) 032411-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9107-6585
https://orcid.org/0000-0003-2746-5062
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.032411&domain=pdf&date_stamp=2020-09-17
https://doi.org/10.1103/PhysRevA.102.032411

S. VARONA AND M. A. MARTIN-DELGADO PHYSICAL REVIEW A 102, 032411 (2020)

pseudothreshold of these decoders should be very close to the
optimal one. This makes neural networks a very suitable way
of determining the threshold of a code, and specifically of the
semion code.

In this paper, we use two different types of neural networks
to build our decoders. First, a multilayer perceptron (MLP),
a very simple feedforward neural network. Then, we present
a certain type of convolutional neural network (CNN) called
ResNet [34], allowing the construction of very deep networks.
Since CNNs naturally take into account the spatial structure
of the code, we will see that they have multiple scalability
and performance advantages in comparison to the MLP. The
semion code is an ideal testing ground for the application
of CNN methods in order to get the most out of them. The
application of CNNs is more justified in the case of the semion
code than in the Kitaev [1,2] or color code [35,36] since it
allows us to take into account the complex spatial correlation
of the syndrome pattern for Pauli noise. This effect is peculiar
to the semion code and never studied thus far. The results of
the neural network decoders will be benchmarked against the
minimal-weight perfect matching (MWPM) decoder [37,38].
While MWPM obtains very good results for the Kitaev code
with independent bit-flip and phase-flip noise, it does not
perform so well when plaquette and vertex syndromes are cor-
related, since it does not take these correlations into account.
This is where neural networks will make a big difference.

The article is organized as follows. In Sec. II we present
a short review of the semion code and the noise model con-
sidered. In Sec. III we introduce the neural network decoders,
compare their performance, and finally present the threshold
values. Section IV is devoted to conclusions.

II. ERROR CORRECTION WITH THE SEMION CODE

The semion code [7] is an error correcting code based on
the double semion model. This error correcting code bears
similarities to the Kitaev toric code. In particular, it is topo-
logical and is a stabilizer code [39]; i.e., plaquette and vertex
operators are periodically measured to detect errors. Neverthe-
less, the semion code is non-CSS and non-Pauli because of the
structure of plaquette operators, and is defined in a hexagonal
lattice. In the hexagonal lattice, edges will represent the phys-
ical qubits and vertices and plaquettes the stabilizer operators.

Vertex operators are equivalent to the ones in the Kitaev
toric code Qv = ZiZ jZk , a Pauli-Z operator applied on each
edge of vertex v. Plaquettes are different; their support in-
cludes not only a hexagon, but also the outgoing legs of the
hexagon (see Fig. 1). We have Pauli-X operators applied on
the edges of the hexagon, as in the toric code, but we also have
a diagonal operator

∑
�j bp(�j)| �j〉〈�j| acting on the 12 qubits

shown in Fig. 1(b). Thus, we have

Bp =
∏
k∈∂ p

Xk

∑
�j

bp(�j)| �j〉〈�j|, (1)

where bp(�j) is a function taking values in {±1,±i}, �j is a bit
string representing a state in the computational basis, and ∂ p
are the edges belonging to the border of the plaquette. bp(�j) is

Qv

(a)

Bp 11

2233

44

55 66 1212

77

88

99

1010

1111

(b)

P• •
S±
P

••

(c)

FIG. 1. The support of each of the operators is shown by contin-
uous lines. The qubits are placed on the edges. (a) Vertex operator
Qv . (b) Plaquette operator Bp. Note that the plaquette contains not
only the red hexagon (where Pauli-X operators are applied), but also
the outgoing legs. (c) Positive- or negative-chirality string operator
S±
P . Path P is indicated by the solid red edges, where the Pauli-X

operators are applied. The support of S±
P , Conn(P), is indicated

with continuous lines. The effect of S±
P on the ground state of the

system is to create a pair of vertex excitations at the vertices located
at the endpoints of the path P , which are identified by red dots.
Additionally, the negative-chirality string creates a pair of plaquette
excitations at the endpoint plaquettes (blue dots).

given explicitly by
∑

�j
bp(�j)| �j〉〈�j| =

∏
k∈∂ p

(−1)n−
k−1n+

k

∏
v∈p

βv, (2)

where n±
i = 1

2 (1 ± Zi), the subscript v runs over the vertices
belonging to plaquette p, and

∏
v∈p βv is

∏
v∈p

βv = in−
12(n−

1 n−
6 −n+

1 n+
6) in−

7 (n+
1 n+

2 −n−
1 n−

2)

× in+
8 (n−

2 n+
3 −n+

2 n−
3) in−

9 (n−
3 n−

4 −n+
3 n+

4)

× in−
10(n+

4 n+
5 −n−

4 n−
5) in+

11(n−
5 n+

6 −n+
5 n−

6), (3)

following the labeling of Fig. 1(b). The Pauli-X operators on
the plaquette edges and the (−1) factors of Eq. (2) form the
plaquette operator as defined originally in the double semion
model topological order,

B̃p =
∏
k∈∂ p

Xk

∏
k∈∂ p

(−1)n−
k−1n+

k . (4)

However, this operator is not Hermitian in the whole Hilbert
space. Neighboring plaquettes do not commute either. The lo-
cal βv phases added at each vertex to B̃p solve these two issues
and allow us to define an error correcting code based on the

032411-2

DETERMINATION OF THE SEMION CODE THRESHOLD … PHYSICAL REVIEW A 102, 032411 (2020)

stabilizer formalism. The code space of the system is formed
by states with eigenvalue +1 for all vertex operators and −1
for all plaquette operators. Similarly to the Kitaev toric code,
when an error occurs, the signs of some of the stabilizers flip.
These locations where the stabilizer flipped can be regarded as
excitations. The recovery procedure consists in annihilating
the excitations with each other in such a way that the total
string operator applied (the trajectory of the quasiparticles)
forms a trivial loop.

String operators generating plaquette excitations, SZ , are
identical to the ones in the Kitaev toric code, i.e., a string of
Z operators. These operators commute with every stabilizer
except the plaquettes at the endpoints of the string. String
operators generating vertex excitations are formed by a string
of X , as in the Kitaev code, and additionally some phases∑

�j F (�j)| �j〉〈�j|, where F (�j) takes values in {±1,±i}. For a
string on a path P we have

S+
P =

∏
k∈P

Xk

∑
�j

F (�j)| �j〉〈�j|. (5)

The support of S+
P is Conn(P), which is shown in Fig. 1(c).

This means that the operator S+
P acts nontrivially only on

the set of qubits Conn(P). Thus, F (�j) = F (�j ⊕�i) for any �i
whose qubits in Conn(P) are zero. Here, ⊕ denotes the sum
mod 2 of the bit strings. F (�j) can be determined by imposing
that the string operator must square to one and that it must
commute with the stabilizers (except at the endpoints, where
it must anticommute). These constraints give rise to a linear
system of equations from which F (�j) can be easily obtained.
The quasiparticle vertex excitations generated by S+

P behave
like anyons. They are called semions due to the fact that
their topological charge is half of that of a fermion, i.e., ±i.
The negative-chirality strings can be obtained multiplying S+
by an SZ string operator joining both endpoints, S− = S+SZ .
Since S+ and S− create semions at the endpoints, two strings
with the same chirality crossing once anticommute, while
strings with opposite chirality commute. SZ commutes with
itself and anticommutes with S±. Summarizing, we have,
for strings crossing once, {SZ , S±} = 0, {S±, S±} = 0, and
[S±, S∓] = 0.

Similarly to what is done in the Kitaev code, we can embed
the double semion on a torus to obtain a quantum memory
with two logical qubits. An example of this can be seen in
Fig. 2. We have a lattice with 16 plaquettes embedded on a
torus. Since we have two encoded logical qubits, we need two
pairs of logical operators. We can define for one of the logical
qubits X̄1 ≡ S−

H and Z̄1 ≡ SZ
V̄ , and for the other X̄2 ≡ S+

V and
Z̄2 ≡ SZ

H̄. The subscript H stands for a horizontal path and
V for a vertical one in Fig. 2. It is clear from the commuta-
tion rules shown previously that these sets of operators fulfill
the necessary anticommutation relations of the Pauli algebra.
Note that the distance of Z̄ operators is half of the X̄ , as a con-
sequence of the hexagonal lattice. Therefore, we may be better
protected against certain types of errors than against others
[7,13,40]. To perform error correction, the stabilizers have to
be measured periodically, and the excitations have to be anni-
hilated by bringing them together using the string operators.

X̄2 ≡ S+
V

X̄1 ≡ S−
H

Z̄2 ≡ SZ
H̄

Z̄1 ≡ SZ
V̄

11 22 33 44

55 66 77 88

99 1010 1111 1212

1313 1414 1515 1616

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030

3131

3232

FIG. 2. Semion code embedded on a torus. Top and bottom,
and left and right borders are identified. Two pairs of logical string
operators (nontrivial loops going around the system) on the torus
are shown (red and blue). We have 16 plaquettes, 32 vertices, and
48 physical qubits, resulting into 2 logical qubits (since one ver-
tex and one plaquette operator are not independent). The code has
distance 4.

Noise model

We consider Pauli noise models [41], given by the expres-
sion

ρ → (1 − p)ρ + pX XρX + pY Y ρY + pZ ZρZ, (6)

where p = pX + pY + pZ . In particular we use two error mod-
els:

(i) Independent bit-flip and phase errors with pX = pZ =
p0 − p2

0 and pY = p2
0. Each qubit is independently acted on

by an X error with probability p0 and by a Z error with same
probability p0. The probability of some error happening is
peff = 1 − (1 − p0)(1 − p0) = 2p0 − p2

0.
(ii) Depolarizing noise with pX = pY = pZ = peff/3.

With probability peff an error occurs in a given qubit. Each
error type, X , Y , and Z , is equally likely.

In order to compare the threshold values obtained for both
independent and depolarizing noise, we use peff , defined as
the probability of any error occurring on a given qubit.

For these noise models consisting of Pauli operators, it
will be important to determine the effect of strings of Pauli-X
operators on a path P acting on the code. We may rewrite a
string of X as

XP =
∏
k∈P

Xk = S+
P

∑
�j

[FP (�j)]∗| �j〉〈�j|. (7)

The diagonal part can be expressed as a sum of strings of
Pauli-Z operators,

∑
�j

[FP (�j)]∗| �j〉〈�j| =
∑

Q∈Conn(P)

c(ZQ)ZQ. (8)

Here ZQ = ∏
j∈Q Zj is the multiplication of Pauli-Z oper-

ators acting on the set of qubits Q, which are contained
in Conn(P). The coefficients c(ZQ) are given by c(ZQ) =
1
2n Tr(ZQ

∑
�j[FP (�j)]∗| �j〉〈�j|), with n = |Conn(P)|.

Now, if we apply XP to a state in the code space |L,C〉,
with L labeling the logical subspace and C representing the

032411-3

S. VARONA AND M. A. MARTIN-DELGADO PHYSICAL REVIEW A 102, 032411 (2020)

TABLE I. The various probabilities of getting a given plaquette
syndrome pattern after the application of the operator X on a qubit,
for the three possible edge orientations [7]. The plaquette labels
correspond to the ones in Fig. 3. The + sign represents excitations at
a given plaquette.

Probability

s(p, q, r, s) Orientation (a) Orientation (b) Orientation (c)

(− − −−) 9/16 1/16 9/16
(+ + −−) 1/16 1/16 1/16
(+ − +−) 1/16 1/16 1/16
(− + +−) 1/16 9/16 1/16
(+ − −+) 1/16 1/16 1/16
(− + −+) 1/16 1/16 1/16
(− − ++) 1/16 1/16 1/16
(+ + ++) 1/16 1/16 1/16

eigenvalues of the stabilizers (+1 for vertex operators and −1
for plaquette operators), we obtain

XP |L,C〉 = S+
P

∑
Q∈Conn(P)

c(ZQ)ZQ|L,C〉. (9)

S+
P flips the vertices at the endpoints of P , and ZQ flips

plaquettes at the endpoints of Q, i.e., those plaquettes p where
only one Z operator acts on ∂ p. When the stabilizer operators
are measured, the state in Eq. (9) collapses. The only terms
remaining in the sum are those where the ZQ operator is com-
patible with the plaquette syndrome measured. This means ZQ
needs to satisfy, for every plaquette involved, [ZQ, Bp]s(p) =
0, where s(p) ∈ {±1} is the syndrome of plaquette p, and
[· , ·]− denotes the commutator and [· , ·]+ the anticommutator.
Therefore, we have

|L,C′〉 = NS+
P

∑
Q∈G

c(ZQ)ZQ|L,C〉, (10)

where N is some normalization factor and G = {Q ∈
Conn(P) : [ZQ, Bp]s(p) = 0 ∀p ∈ BP}. BP represents the set
of plaquettes whose support contains some part of P . |L,C′〉
is a state in which the plaquettes at the endpoints of ZQ are
violated, as well as the vertices at the endpoints of S+

P . To
get back to the previous state, we need a recovery operation,
ZR, that brings us back from ZQ|L,C〉 to |L,C〉, where the
multiplication ZRZQ forms a trivial loop of Pauli-Z operators
in the dual lattice. Therefore, ZR corrects plaquette errors.
Additionally, applying some S+

O (with O + P , the symmetric
difference of O and P , a trivial loop), we recover the initial
state |L,C〉.

The probability of obtaining a certain plaquette syndrome
when measuring the stabilizers in state (9) is

P(s) =
∣∣∣∣∣
∑
Q∈G

c(ZQ)

∣∣∣∣∣
2

. (11)

The different probabilities of plaquette excitations in the case
of a single X operator acting on a qubit can be seen in Table I.
Note that the probabilities depend on the orientation of the
edge (see Fig. 3), showing that the code has some anisotropy.

p

q

r

s

(a)

q

p

r

s

(b)

p

q s

r

(c)

FIG. 3. The three possible edge orientations on which the X op-
erator can be applied. The X operator acts on the central continuous
edge, and may leave plaquette excitations on the four surrounding
plaquettes labeled by p, q, r, and s. The probabilities of measuring a
given plaquette pattern are given in Table I.

Given the complex structure of plaquette operators and
the stabilizer syndromes caused by Pauli-X and -Y operators,
the error syndromes of plaquette and vertex operators will be
highly correlated for Pauli noise models, even for the case of
(i) independent bit-flip and phase errors. Mapping the system
to a tractable statical mechanical model in the same way it is
done with the Kitaev toric code to determine the threshold is
extremely difficult. This calls for alternative methods to ad-
dress this problem and machine learning with neural decoders
has remained unexplored for the semion code.

III. NEURAL NETWORK DECODERS

One of the standard practices in neural network decoders
is to train a neural network to correct the output of a simple
decoder. The simple decoder is given the syndrome mea-
surements and yields a rudimentary correction. When the
correction is applied, four different outcomes may occur: the
errors are corrected and the code returns to its original state
(Ī , identity is applied), or a logical error occurs (X̄ , Ȳ , or Z̄
logical error). The neural network is trained to predict this
final outcome, i.e., the logical Pauli operator applied to the
code, so that the simple decoder can be corrected. In this way,
the decoding process turns into a classification problem where
a neural network can be used. This is the approach we adopt
here.

In particular, we consider the semion code embedded on a
torus, such as the one shown in Fig. 2. Our simple decoder
will take all excitations to the same point of the lattice, vertex
number 1 or plaquette number 1, using the shortest path, to
annihilate all excitations. This recovery operation produces a
logical error (Ī , X̄ , Ȳ , or Z̄) which a neural network will try to
correct. Note that since the code is embedded on a torus, we
have two logical qubits. Thus, we have a total of 16 possible
error combinations. Therefore, the input of our neural network
will be the syndrome measurements, and the output one of
these 16 categories. The input will be given as an array [one-
dimensional (1D) or 2D] of bits, with value 1 corresponding
to a stabilizer excitation and 0 to no excitation.

Note that one vertex and one plaquette syndrome are re-
dundant, since they can be obtained if we know the rest of the
syndromes and error excitations are created in pairs. However,
in the presence of measurement errors (when the measurement
of syndromes is no longer perfect) this is no longer true, and

032411-4

DETERMINATION OF THE SEMION CODE THRESHOLD … PHYSICAL REVIEW A 102, 032411 (2020)

... ...
...

...

s1

s2

s3

sn

Ī Ī

ĪX̄

ĪȲ

Z̄Z̄

Input
layer

Hidden
layers

Output
layer

FIG. 4. The MLP receives the syndrome as input, i.e., a bit string
with the vertex and plaquette operator measurements, and outputs the
predicted error of the two logical qubits encoded in the torus.

all syndromes become relevant. While our setup does not
consider measurement errors and we could thus omit these
two inputs, we have decided to keep them to have a more
generalizable model and preserve the spatial structure of the
2D array fed into the CNN.

Training data are generated taking samples of Pauli errors
according to the corresponding probability distribution of the
noise model and the probability distribution of plaquette syn-
dromes of Eq. (11). The syndrome data are labeled with the
logical error produced by the simple decoder. In the training
process, the neural network is first trained on a small train-
ing set with a low error rate. Then, the network is trained
with an error rate near the threshold value to obtain optimal
performance. Since the error threshold is not known a priori,
several error rates are checked. A lower bound can be easily
obtained by first using a MWPM decoder. Despite the fact that
the model is trained for a certain error rate, it also performs
well for lower error rates.

We now present two different neural network decoders.
One is based on the MLP and the other is a CNN, in particular
a ResNet model.

A. Multilayer perceptron decoder

The MLP is one of the simplest classes of feedforward
artificial neural networks. A MLP consists of three different
parts: an input layer, hidden layers, and an output layer, as can
be seen in Fig. 4. The layers are formed by neurons or nodes,
with trainable parameters. Each node is fully connected to all
nodes in the neighboring layers. The universal approximation
theorem [42,43] states that a finite MLP can approximate any
continuous function. Therefore, if trained appropriately, the
MLP should be a near-optimal decoder.

The structure of this MLP follows closely the one pre-
sented in Ref. [33], where they found near-optimal decoders
for other topological codes, the Kitaev code and the color
code. All hidden layers have the same number of nodes. The
cost function is chosen to be categorical cross entropy [44]
and the optimizer is Adam [45], a gradient-based optimiza-
tion algorithm with better performance than a simple gradient
descent. The activation function is ReLU, f (x) = max(0, x),
with He initialization of weights [46]. In order to train deep
neural networks and avoid vanishing gradient convergence

FIG. 5. Accuracy as a function of the number of train-
ing parameters for MLPs with different numbers of layers and
nodes. Twenty different MLPs considered with the following pa-
rameters: hidden layers, H ∈ {4, 6, 8, 10}; nodes per layer, N ∈
{266, 400, 600, 900, 1400}. Independent bit-flip and phase error at
rate p0 = 0.045 for code distance 5.

problems, we make use of batch normalization [47] in each
layer.

Instead of computing the gradient of the cost function in
the whole data set, an approximation is computed using a
small batch of data and then the parameters are updated. The
batch size was chosen to be 104. The final performance of
the MLP is not affected by this number, provided it is not
too small. If we have a small data set, and the network is
trained several epochs over the same data, it is likely we will
suffer overfitting. To avoid this, each batch of data is fed only
once into the network during the training process, although
this requires larger training sets.

Regarding hyperparameter tuning, a search was done to
obtain the optimal number of layers and nodes. In general,
for a given code distance, the higher the number of trainable
parameters in the model, the better the performance, as can
be seen in Fig. 5. However, we found that there is a point
beyond which increasing the number of layers or nodes (and
consequently increasing the number of parameters) produces
very little accuracy improvement while increasing substan-
tially the training time. Beyond that point, there is a broad
range of models with very similar performance and different
hyperparameters. Among them, we tried to choose the one
with the lowest training time. Increasing the code distance by
one was roughly observed to require double as many trainable
parameters in the MLP model to reach good performance.

B. Convolutional neural network decoder

Despite the very good performance of the MLP in terms
of accuracy, this approach is not scalable for error correction
in large codes, since the training time increases exponentially
with the size of the code. In addition, the information about
the spatial distribution of the syndromes was not provided to
the MLP, which has to figure this out by itself during training.
These two problems suggest using a CNN for the task. In a
CNN, the hidden layers are convolutional layers. Each input
to the next layer is computed from a small local region of

032411-5

S. VARONA AND M. A. MARTIN-DELGADO PHYSICAL REVIEW A 102, 032411 (2020)

x

Convolutional layer

Convolutional layer
ReLU

+

f(x)

ReLU

f(x) + x

(a)

input

3 × 3, 16, convolution

[3 × 3, 16, building block]×n

[3 × 3, 32, building block]×n

[3 × 3, 64, building block]×n

dense layer
flatten

(b)

FIG. 6. (a) ResNet building block. A shortcut connection skips
the convolutional layers. (b) ResNet model. n building blocks are
stacked at each stage. The first stage has 16 filters, the second has 32,
and the third 64. The filter size is always 3 × 3 and stride equals 1.
The depth of the model is d = 6n + 2.

the preceding layer using some trainable parameters called
filters. CNNs have been extensively used for image recogni-
tion. Although the information at each position in our lattice
is binary, namely, the ±1 value of the stabilizer measurement
(compare this to an RGB image with 256 values per pixel
in each channel), we can still see it as an image and feed it
into a CNN. A syndrome pattern of errors can be considered
as an image to be recognized with machine learning CNN
methods. The semion code is very special since the structure
of plaquette stabilizers causes complex correlations between
X and Z errors produced externally [see Eq. (11)]. This is
why we may argue that CNN decoders are especially well
suited to the semion code in comparison to other neural net-
work decoders, for CNN models were devised to mitigate the
drawbacks posed by the MLP architecture by exploiting the
strong spatially local correlation present in natural images.

We base our CNN model on the ResNet architecture. The
ResNet architecture allows us to build very deep models,
stacking a large number of convolutional layers without learn-
ing degradation. This is made possible by introducing residual
shortcuts, connections performing the identity mapping and
skipping the stacked layers. The shortcut output is added
to the output of the stacked layers, as shown in Fig. 6(a),
which constitutes the building block of ResNet. Our archi-
tecture consists of three stacked stages, where each stage has
n building blocks like the one depicted in Fig. 6(a), and the
convolutional layers have 3 × 3 filters. Batch normalization is
performed after each convolutional layer. When going from
one stage to the next, the number of filters is doubled. When
doing image classification, this doubling in the number of
filters is usually accompanied by downsampling the data using
a convolutional layer of stride 2. However, we found that
downsampling reduces noticeably the accuracy of the model,
specially when doing two of them (at the end of stage 1 and
at the end of stage 2). Therefore, we do not perform any
downsamplings. At the beginning of stages 2 and 3, when the
number of filters is doubled, the identity shortcut connection
of the first block is substituted by a convolutional layer with

TABLE II. Mapping of syndromes of the hexagonal lattice in
Fig. 2 to a square structure suitable for a CNN. The data inside the
square contain the stabilizers in the torus of Fig. 2, while the data
outside are the periodic padding used in each convolution, indicating
the periodic boundary conditions of the torus. × represents some
extra values needed to preserve the hexagonal spatial structure in the
square lattice; they will always be set to zero. Circled numbers repre-
sent plaquettes; the rest are vertices. The 48 stabilizer measurements
of a distance d = 4 code are fed into the CNN as an 8 × 8 image. In
general a code of distance d will produce an image of size 2d × 2d .

4 5 6 7 8 1 2 3 4 5

14 × 15 × 16 × 13 × 14 ×
29 30 31 32 25 26 27 28 29 30
× 11 × 12 × 9 × 10 × 11
22 23 24 17 18 19 20 21 22 23
7 × 8 × 5 × 6 × 7 ×
15 16 9 10 11 12 13 14 15 16
× 4 × 1 × 2 × 3 × 4
8 1 2 3 4 5 6 7 8 1

16 × 13 × 14 × 15 × 16 ×

the corresponding number of 1 × 1 filters. Finally, the output
of these three stages is flattened and fed into a fully connected
layer with softmax activation function. The model is shown
schematically in Fig. 6(b).

In order to perform convolutions, we need to recast our
hexagonally distributed data into a square lattice. This is done
as presented in Table II for the code of distance 4 in Fig. 2 (this
transformation is explained in more detail in Appendix B for
a code of arbitrary distance). With this mapping, some extra
syndromes are introduced so that the spatial structure is faith-
ful to the original one. These extra syndromes are always set
to zero. It is also important to preserve the periodic boundary
conditions of the torus. Therefore, before each convolution,
the square data are padded periodically, as can be seen in
Table II, where one extra row and one extra column is added
at each side.

Again, the cost function is the categorical cross entropy
and the optimizer is Adam. We also use the ReLU activation

TABLE III. MLP and ResNet figures for code distance 7 and
trained with independent noise at peff = 0.048. The MLP has H = 8
and N = 1400. The first column shows the number of trainable
parameters of each model, the second the number of training steps,
and the third the accuracy. This compares to a MWPM accuracy of
58.9%.

Trainable parameters Steps Accuracy

MLP 1.2 × 107 6.9 × 105 74.0%
ResNet14 3.8 × 105 9.1 × 104 73.8%
ResNet50 9.6 × 105 4.3 × 104 74.1%

032411-6

DETERMINATION OF THE SEMION CODE THRESHOLD … PHYSICAL REVIEW A 102, 032411 (2020)

TABLE IV. Semion code (SC) and hexagonal Kitaev toric code
(KTC) peff threshold values for the different decoders considered:
minimal weight perfect matching (MWPM), multilayer perceptron
(MLP), and a ResNet50 convolutional neural network. MLP values
were not computed for the KTC.

MWPM MLP ResNet50

SC Bit and phase flip 7.6% 9.4% 9.5%
Depolarizing 7.5% 10.5% 10.5%

KTC Bit and phase flip 12.5% 13.2%
Depolarizing 10.0% 11.9%

function and He initialization. The batch size is chosen to be
1000. For smaller sizes, it is more likely that the model con-
verges to a local minimum during training. During training,
when the loss value reaches a plateau, the learning rate is
reduced by a factor of 0.3. This is repeated until we observe
that reducing the learning rate does not produce any accuracy
gains.

These models already have similar performance to the
MLP in terms of classification accuracy with n = 2, i.e., a
depth of 14, and reduce substantially the number of parame-
ters, the training time, and the size of the data set. The optimal
performance was found for n = 8, depth of 50, for all code
distances considered.

Another advantage of CNNs is the possibility of using
transfer learning. The parameters learned by the convo-
lutional layers for a given code distance can be reused
for another code distance; this applies especially to the
initial layers of the model, which tend to learn generic
features. These parameters can be used as the starting
point of the optimization to reduce the training time of
the model. In addition, some of these initial layers can
be declared nontrainable so that the learning time is even
shorter.

C. Results

Here we present the threshold values obtained for the
semion code as well as an analysis of the performance of
the different decoders. As was mentioned earlier, ResNet
is a much better option than MLP in terms of scalabil-
ity and computational costs. This is shown in Table III,
where we can see that the number of training steps and
the number of trainable parameters are, respectively, one
and two orders of magnitude lower for the ResNet model.
Since the number of training steps is lower, the data set is
also smaller for ResNet (the number of training examples
is obtained by multiplying the training steps by the batch
size), which also reduces the cost of producing the training
data.

0.06 0.08 0.10

peff

0.1

0.2

0.3

0.4

0.5

0.6

p̄

9

11

13

(a)

0.08 0.10 0.12

peff

0.2

0.3

0.4

p̄

5

6

7

(b)

0.08 0.10 0.12

peff

0.2

0.3

0.4
p̄

5

6

7

(c)

0.08 0.10 0.12

peff

0.2

0.3

0.4

0.5

0.6

0.7

p̄

9

11

13

(d)

0.08 0.10 0.12 0.14

peff

0.1

0.2

0.3

0.4

0.5

p̄

5

6

7

(e)

0.08 0.10 0.12 0.14

peff

0.1

0.2

0.3

0.4

0.5

p̄

5

6

7

(f)

FIG. 7. Logical error rate, p̄, as a function of effective error rate, peff . Independent bit- and phase-flip noise results in (a), (b), and (c).
Depolarizing noise in (d), (e), and (f). For the MLP, (b) and (e), the number of hidden layers, H , and number of neurons, N , are H = 6 and
N = 900, for distance 5; H = 7 and N = 1100, for distance 6; and H = 8 and N = 1400, for distance 7. (a) MWPM decoder with independent
noise. (b) MLP decoder with independent noise. (c) ResNet50 decoder with independent noise. (d) MWPM decoder with depolarizing noise.
(e) MLP decoder with depolarizing noise. (e) ResNet50 with depolarizing noise.

032411-7

S. VARONA AND M. A. MARTIN-DELGADO PHYSICAL REVIEW A 102, 032411 (2020)

In Table IV and Fig. 7, we can see the threshold values
for the different decoders. We obtain a threshold of 9.5% in
the case of independent bit and phase flip and 10.5% for de-
polarizing noise. These quantities correspond to the effective
error rate, peff , defined in Sec. II. These values contrast with
the ones obtained for the Kitaev toric code in a hexagonal
lattice, which we also obtain with neural decoders [48] (see
Table IV). We find the depolarizing threshold to be higher
than the one for independent bit- and phase-flip noise, sug-
gesting that plaquette and vertex syndrome correlations in
the semion code play an important role. Despite the lower
threshold results obtained for the semion code, it is important
to note that we are considering Pauli noise. Since the stabi-
lizers of the toric code are formed by Pauli operators, Pauli
noise results in a simple structure for the errors, while for the
double semion we have a much more complex structure [see
Eq. (11)]. This is especially so in the case of independent bit-
and phase-flip noise, where plaquette and vertex syndromes
are not correlated in the Kitaev toric code. We can see that
the MWPM threshold gets much closer to the neural decoder
threshold for the Kitaev code, since MWPM does not take
into account plaquette and vertex correlations, while for the
rest of the cases, where correlations contribute significantly,
MWPM falls behind and neural decoders perform signifi-
cantly better. As a consequence of the non-Pauli nature of the
semion code, the threshold difference between depolarizing
and independent noise is not as high for the semion code,
since for both noise cases vertex and plaquette syndromes are
correlated.

Despite ResNet being more accurate than the MLP and
intrinsically including the spatial information that the MLP
lacks, thresholds obtained are nearly the same in both cases.
This may suggest that the pseudothresholds achieved are very
close to the optimal one, and there is little room for perfor-
mance enhancements.

IV. CONCLUSION

Quantum error correction is expected to be a fundamental
tool to achieve the desired reliable and robust quantum com-
putation and the first proof-of-principle steps towards this goal
have been already achieved experimentally [50–53]. Topolog-
ical quantum error correction with Abelian stabilizer codes
has become a mature research field by now, providing one
of the most valuable schemes on the road of fault-tolerant
quantum computation [10,54,55]. It all begun with the simple
Kitaev toric code, whose companion model with the same
gauge symmetry group—the double semion model—has re-
mained outside the quantum error correction methods until
recently [7].

We have determined a near-optimal threshold for the
semion code in the cases of independent bit- and phase-flip
noise and depolarizing noise. The fact that neural decoders
can have near-optimal performance shows that the pseu-
dothreshold values obtained for the semion code with the
ResNet decoder should be very close to the real threshold
values. Since for the semion code, the plaquette stabilizer
operators are not a simple product of Pauli operators, the
usual mapping to a statistical mechanical model becomes a

very complex problem, and using deep learning models be-
comes a nice and efficient way of determining the threshold
of the semion code. These same methods could be used for
other topological codes with non-Pauli stabilizers or non-Pauli
noise models [6,56].

The ResNet architecture has shown a good performance in
error correction. Nevertheless, it may still be possible to ob-
tain little performance improvements by, for instance, taking
other mappings from the hexagonal lattice to the square lattice
(see Table II) or implementing slightly different versions of
the ResNet model. In addition, it would be interesting to
apply this kind of deep learning model, not only to thresh-
old determination but also to build general purpose scalable
decoders. Data augmentation, i.e., taking advantage of the
symmetries of the error correcting code to reduce the size
of the data set, as was suggested in Ref. [57], and trans-
fer learning, i.e., reusing the weights previously learned for
smaller systems, should help us to obtain scalable neural de-
coders.

The source code of the neural network decoder can be
found in Ref. [58].

ACKNOWLEDGMENTS

We thank G. Dauphinais for useful discussions at the early
stage of this research. The authors thankfully acknowledge
the resources from the supercomputer “Cierzo,” HPC in-
frastructure of the Centro de Supercomputación de Aragón
(CESAR), and the technical expertise and assistance provided
by BIFI (Universidad de Zaragoza). S.V. especially thanks
Héctor Villarrubia Rojo for computational resources and tech-
nical assistance. We acknowledge financial support from the
Spanish MINECO grants MINECO/FEDER Projects No.
FIS2017-91460-EXP and No. PGC2018-099169-B-I00FIS-
2018 and from CAM/FEDER Project No. S2018/TCS-4342
(QUITEMAD-CM). The research of M.A.M.-D. has been par-
tially supported by the U.S. Army Research Office through
Grant No. W911NF-14-1-0103. S.V. thanks the support of a
FPU MECD Grant.

APPENDIX A: EXPONENTIAL SUPPRESSION OF NOISE

To further confirm that what we see is an error correcting
threshold, we check here that (i) the noise is exponentially
suppressed for larger code distances and (ii) the logical error
rate is reduced to values much lower than the physical error
rate. In order to show this clearly, we train ResNet50 decoders
for code distances up to d = 13. Showing this same result for
the MLP is very costly given the scaling of the model. Due
to memory limitations, the batch size was chosen to be 300
when training the ResNet50 models with d > 7. These results
are shown in Fig. 8.

APPENDIX B: MAPPING OF THE HEXAGONAL LATTICE
INTO A SQUARE LATTICE

In this Appendix, we describe how the 1D array of stabi-
lizer measurements provided as input to the MLP is converted

032411-8

DETERMINATION OF THE SEMION CODE THRESHOLD … PHYSICAL REVIEW A 102, 032411 (2020)

5 7 9 11 13

d

10−3

10−2

10−1

p̄

7.6 %

5.9 %

4.5 %

3.8 %

3.0 %

(a)

5 7 9 11 13

d

10−3

10−2

10−1

p̄

8.4 %

6.9 %

5.7 %

4.5 %

3.8 %

(b)

FIG. 8. Logical error rate, p̄, as a function of code distance, d ,
for the ResNet50 decoder. This shows the exponential suppression
of noise for (a) independent bit- and phase-flip and (b) depolarizing
noise. Each dotted line is an exponential fit of the data points corre-
sponding to a peff value.

into a 2D array suitable for the CNN and reflecting the spa-
tial structure of the code. Since the semion code is defined
on a hexagonal lattice, we need to convert the hexagonally
distributed stabilizer measurements into a square distribution,
while preserving the spatial structure. This is done as follows.
The code of distance d has nv = 2d2 vertices and np = d2

plaquettes, for a total of n = nv + np = 3d2 stabilizers. The
1D array of n stabilizers measurements will be converted into
a 2d × 2d image, I . Suppose vertices and plaquettes have
been sequentially labeled from left to right and bottom to top,
as shown in Fig. 2 for the code of distance 4. The syndrome
of vertex v corresponds to the image element Ii, j , where i and
j are

i = 2
⌊v − 1

2d

⌋
+ 1, (B1)

j = mod
(
v − 1 + (1 − 2d)

⌊v − 1

2d

⌋
, 2d

)
+ 1. (B2)

The syndrome of plaquette p corresponds to the element Ii, j ,
with i and j given by

i = 2
⌊ p − 1

d

⌋
+ 2, (B3)

j = mod
(

2p + (1 − 4d)
⌊ p − 1

d

⌋
, 2d

)
+ 1. (B4)

Since I has 4d2 elements and we have 3d2 stabilizers, there
are a few elements in I which do not correspond to any
stabilizer. These elements are always set to zero. The result
of this transformation is shown in Table II for the code of
distance 4 of Fig. 2. In Table II, those elements denoted with
the symbol “×” represent the elements that do not correspond
to any stabilizer measurement.

[1] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[3] M. A. Levin and X.-G. Wen, String-net condensation: A physi-
cal mechanism for topological phases, Phys. Rev. B 71, 045110
(2005).

[4] M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang,
A class of P,T -invariant topological phases of interacting elec-
trons, Ann. Phys. 310, 428 (2004).

[5] C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon, Three-
dimensional topological lattice models with surface anyons,
Phys. Rev. B 87, 045107 (2013).

[6] Julio Carlos Magdalena de la Fuente, N. Tarantino, and J. Eisert,
Non-Pauli topological stabilizer codes from twisted quantum
doubles, arXiv:2001.11516.

[7] G. Dauphinais, L. Ortiz, S. Varona, and M. A. Martin-Delgado,
Quantum error correction with the semion code, New J. Phys.
21, 053035 (2019).

[8] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[9] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[10] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[11] H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado, Er-
ror Threshold for Color Codes and Random Three-Body Ising
Models, Phys. Rev. Lett. 103, 090501 (2009).

[12] R. S. Andrist, H. G. Katzgraber, H. Bombin, and M. A. Martin-
Delgado, Tricolored lattice gauge theory with randomness:
Fault tolerance in topological color codes, New J. Phys. 13,
083006 (2011).

[13] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber,
and M. A. Martín-Delgado, Strong Resilience of Topo-
logical Codes to Depolarization, Phys. Rev. X 2, 021004
(2012).

[14] C. T. Chubb and S. T. Flammia, Statistical mechanical models
for quantum codes with correlated noise, arXiv:1809.10704.

[15] Z.-A. Jia, Y.-H. Zhang, Y.-C. Wu, L. Kong, G.-C.
Guo, and G.-P. Guo, Efficient machine-learning repre-
sentations of a surface code with boundaries, defects,
domain walls, and twists, Phys. Rev. A 99, 012307
(2019).

[16] H. Chen, M. Vasmer, N. P. Breuckmann, and E. Grant, Ma-
chine learning logical gates for quantum error correction,
arXiv:1912.10063.

032411-9

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1016/j.aop.2004.01.006
https://doi.org/10.1103/PhysRevB.87.045107
http://arxiv.org/abs/arXiv:2001.11516
https://doi.org/10.1088/1367-2630/ab1ed8
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.103.090501
https://doi.org/10.1088/1367-2630/13/8/083006
https://doi.org/10.1103/PhysRevX.2.021004
http://arxiv.org/abs/arXiv:1809.10704
https://doi.org/10.1103/PhysRevA.99.012307
http://arxiv.org/abs/arXiv:1912.10063

S. VARONA AND M. A. MARTIN-DELGADO PHYSICAL REVIEW A 102, 032411 (2020)

[17] H. Poulsen Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel,
and N. Friis, Optimizing quantum error correction codes with
reinforcement learning, Quantum 3, 215 (2019).

[18] G. Torlai and R. G. Melko, Neural Decoder for Topological
Codes, Phys. Rev. Lett. 119, 030501 (2017).

[19] M. Sheth, S. Z. Jafarzadeh, and V. Gheorghiu, Neural ensemble
decoding for topological quantum error-correcting codes, Phys.
Rev. A 101, 032338 (2020).

[20] Nikolas P. Breuckmann, and X. Ni, Scalable neural network
decoders for higher dimensional quantum codes, Quantum 2,
68 (2018).

[21] S. Varsamopoulos, B. Criger, and K. Bertels, Decoding small
surface codes with feedforward neural networks, Quantum Sci.
Technol. 3, 015004 (2017).

[22] S. Varsamopoulos, K. Bertels, and C. G. Almudever, Compar-
ing neural network based decoders for the surface code, IEEE
Trans. Comput. 69, 300 (2020).

[23] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W. J.
Beenakker, Machine-learning-assisted correction of corre-
lated qubit errors in a topological code, Quantum 2, 48
(2018).

[24] P. Andreasson, J. Johansson, S. Liljestrand, and M. Granath,
Quantum error correction for the toric code using deep rein-
forcement learning, Quantum 3, 183 (2019).

[25] S. Krastanov and L. Jiang, Deep neural network probabilistic
decoder for stabilizer codes, Sci. Rep. 7, 11003 (2017).

[26] D. Fitzek, M. Eliasson, A. F. Kockum, and M. Granath, Deep Q-
learning decoder for depolarizing noise on the toric code, Phys.
Rev. Research 2, 023230 (2020).

[27] Y.-H. Liu and D. Poulin, Neural Belief-Propagation Decoders
for Quantum Error-Correcting Codes, Phys. Rev. Lett. 122,
200501 (2019).

[28] P. Baireuther, M. D. Caio, B. Criger, C. W. J. Beenakker,
and T. E. O’Brien, Neural network decoder for topological
color codes with circuit level noise, New J. Phys. 21, 013003
(2019).

[29] C. Chamberland and P. Ronagh, Deep neural decoders for
near term fault-tolerant experiments, Quantum Sci. Technol. 3,
044002 (2018).

[30] X. Ni, Neural network decoders for large-distance 2D toric
codes, Quantum 4, 310 (2020).

[31] N. H. Nickerson and B. J. Brown, Analysing correlated noise on
the surface code using adaptive decoding algorithms, Quantum
3, 131 (2019).

[32] A. Davaasuren, Y. Suzuki, K. Fujii, and M. Koashi, General
framework for constructing fast and near-optimal machine-
learning-based decoder of the topological stabilizer codes,
Phys. Rev. Research 2, 033399 (2020).

[33] N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advantages
of versatile neural-network decoding for topological codes,
Phys. Rev. A 99, 052351 (2019).

[34] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016
(IEEE, New York, 2016), pp. 770–778.

[35] H. Bombin and M. A. Martin-Delgado, Topological Quantum
Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[36] H. Bombin and M. A. Martin-Delgado, Topological Com-
putation without Braiding, Phys. Rev. Lett. 98, 160502
(2007).

[37] V. Kolmogorov, Blossom V: A new implementation of a mini-
mum cost perfect matching algorithm, Math. Program. Comput.
1, 43 (2009).

[38] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[39] D. Gottesman, Class of quantum error-correcting codes satu-
rating the quantum hamming bound, Phys. Rev. A 54, 1862
(1996).

[40] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh Error
Threshold for Surface Codes with Biased Noise, Phys. Rev.
Lett. 120, 050505 (2018).

[41] S. T. Flammia and J. J. Wallman, Efficient estimation of Pauli
channels, arXiv:1907.12976.

[42] M. Leshno, V. Ya. Lin, A. Pinkus, and S. Schocken, Multilayer
feedforward networks with a nonpolynomial activation func-
tion can approximate any function, Neural Networks 6, 861
(1993).

[43] K. Hornik, Approximation capabilities of multilayer feedfor-
ward networks, Neural Networks 4, 251 (1991).

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning (MIT Press, Cambridge, MA, 2016), http://
www.deeplearningbook.org.

[45] D. P. Kingma and J. Ba, Adam: A method for stochas-
tic optimization, Third International Conference for Learn-
ing Representations, San Diego, CA, 2015 (unpublished),
arXiv:1412.6980.

[46] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into
rectifiers: Surpassing human-level performance on ImageNet
classification, in 2015 IEEE International Conference on Com-
puter Vision (ICCV), Santiago, 2015 (IEEE, New York, 2015),
pp. 1026–1034.

[47] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
arXiv:1502.03167.

[48] For independent bit- and phase-flip noise, the error threshold of
the Kitaev code in different lattice geometries was computed in
Ref. [49] using MWPM.

[49] K. Fujii and Y. Tokunaga, Error and loss tolerances of sur-
face codes with general lattice structures, Phys. Rev. A 86,
020303(R) (2012).

[50] D. Nigg, M. Mueller, E. A. Martinez, P. Schindler, M. Hennrich,
T. Monz, M. A. Martin-Delgado, and R. Blatt, Quantum com-
putations on a topologically encoded qubit, Science 345, 302
(2014).

[51] M. Müller, A. Rivas, E. A. Martínez, D. Nigg, P. Schindler,
T. Monz, R. Blatt, and M. A. Martin-Delgado, Iterative Phase
Optimization of Elementary Quantum Error Correcting Codes,
Phys. Rev. X 6, 031030 (2016).

[52] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P.
Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N.
Cleland, and J. M. Martinis, Superconducting quantum cir-
cuits at the surface code threshold for fault tolerance, Nature
(London) 508, 500 (2014).

[53] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross,
M. Steffen, J. M. Gambetta, and J. M. Chow, Demon-
stration of a quantum error detection code using a square
lattice of four superconducting qubits, Nat. Commun. 6, 6979
(2015).

032411-10

https://doi.org/10.22331/q-2019-12-16-215
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevA.101.032338
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1109/TC.2019.2948612
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1103/PhysRevResearch.2.023230
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1088/1367-2630/aaf29e
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.22331/q-2020-08-24-310
https://doi.org/10.22331/q-2019-04-08-131
https://doi.org/10.1103/PhysRevResearch.2.033399
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevLett.120.050505
http://arxiv.org/abs/arXiv:1907.12976
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.deeplearningbook.org
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1502.03167
https://doi.org/10.1103/PhysRevA.86.020303
https://doi.org/10.1126/science.1253742
https://doi.org/10.1103/PhysRevX.6.031030
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/ncomms7979

DETERMINATION OF THE SEMION CODE THRESHOLD … PHYSICAL REVIEW A 102, 032411 (2020)

[54] D. A. Lidar and T. A. Brun, Quantum Error Cor-
rection (Cambridge University Press, Cambridge,
2013).

[55] K. Fujii, Quantum Computation with Topological Codes:
From Qubit to Topological Fault-Tolerance (Springer,
2005).

[56] H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado,
Twisted fracton models in three dimensions, Phys. Rev. B 99,
155118 (2019).

[57] T. Wagner, H. Kampermann, and D. Bruß, Symmetries for a
high level neural decoder on the toric code, arXiv:1910.01662.

[58] https://github.com/varona/nn_decoder.

032411-11

https://doi.org/10.1103/PhysRevB.99.155118
http://arxiv.org/abs/arXiv:1910.01662
https://github.com/varona/nn_decoder

