Publication:
Association between central retinal thickness and low luminance visual acuity in early age-related macular degeneration

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-11-05
Authors
Hurtado Ceña, Francisco Javier
Perez Carrasco, María Jesús
Contreras Martín, Inés
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Sage
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Purpose/Aim: To examine whether central retinal thickness (CRT) is related to mesopic visual acuity (VA) and low luminance deficit (LLD, difference between photopic and mesopic VA) in eyes with early and intermediate age-related macular degeneration (AMD). Materials and Methods: In a cross-sectional study, 50 pseudophakic subjects older than 63 years were divided into three groups (no AMD, early AMD and intermediate AMD). Spectral domain optical coherence tomography (SD-OCT) was used to measure CRT in the 1 mm-central-area. Best-corrected distance VA was measured under photopic or mesopic luminance conditions and LLD calculated. Subjects were stratified by VA impairment to compare CRTs across these groups. Relationships were examined by stepwise multiple linear regression. Results: No significant differences in mean CRT, photopic and mesopic VA or LLD were detected between the groups no AMD, early AMD and intermediate AMD. However, mean CRTs were 20 microns and 18 microns thicker in the eyes with impaired mesopic VA (> 0.3 logMAR) and impaired LLD (⩾ 0.3 logMAR) compared to the eyes with non-impaired VA or LLD respectively (both p < 0.01). CRT and mesopic pupil size were independent predictors of mesopic VA (p = 0.001). CRT emerged as the only independent predictor of LLD (p = 0.004). Conclusions: Increased CRT was linked to worse retinal function when measured under mesopic conditions in eyes without AMD and eyes with early to intermediate AMD. SD-OCT imaging combined with VA measurements under low luminance conditions could be a useful tool to detect early AMD.
Description
© 2020 SAGE journals.
Keywords
Citation
Collections