Universidad Complutense de Madrid
E-Prints Complutense

Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES

Downloads

Downloads per month over past year

63340

Impacto

Downloads

Downloads per month over past year

Montes Gutiérrez, David (2020) Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES. Astronomy & Astrophysics, 643 . ISSN 0004-6361

[thumbnail of davidmontes114libre.pdf]
Preview
PDF
23MB

Official URL: http://dx.doi.org/10.1051/0004-6361/202038629




Abstract

Aims. We aim to study the presence of hazes in the atmospheres of HD 209458 b and HD 189733 b with high spectral resolution spectra by analysing the strength of water vapour cross-correlation signals across the red optical and near-infrared wavelength ranges.
Methods. A total of seven transits of the two planets were observed with the CARMENES spectrograph at the 3.5 m Calar Alto telescope. Their Doppler-shifted signals were disentangled from the telluric and stellar contributions using the detrending algorithm SYSREM. The residual spectra were subsequently cross-correlated with water vapour templates at 0.70–0.96 µm to measure the strength of the water vapour absorption bands.
Results. The optical water vapour bands were detected at 5.2σ in HD 209458 b in one transit, whereas no evidence of them was found in four transits of HD 189733 b. Therefore, the relative strength of the optical water bands compared to those in the near-infrared were found to be larger in HD 209458 b than in HD 189733 b.
Conclusions. We interpret the non-detection of optical water bands in the transmission spectra of HD 189733 b, compared to the detection in HD 209458 b, to be due to the presence of high-altitude hazes in the former planet, which are largely absent in the latter. This is consistent with previous measurements with the Hubble Space Telescope. We show that currently available CARMENES observations of hot Jupiters can be used to investigate the presence of haze extinction in their atmospheres.


Item Type:Article
Additional Information:

Artículo firmado por 23 autores. © ESO 2020. A.S.L. and I.S. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement no. 694513. CARMENES is an instrument for the Centro Astronómico Hispano-Alemán de Calar Alto (CAHA, Almería, Spain). CARMENES is funded by the German Max-PlanckGesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Científicas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, Landessternwarte Königstuhl, Institut de Ciències de l’Espai, Insitut für Astrophysik Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg, Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astrobiología and Centro Astronómico Hispano-Alemán), with additional contributions by the Spanish Ministerios de Ciencia e Innovación and of Economía y Competitividad, the Fondo Europeo de Desarrollo Regional (FEDER/ERF), the Agencia estatal de investigación, the Fondo Social Europeo under grants AYA2011-30 147-C03-01, -02 and -03, AYA2012- 39612-C03-01, ESP2013-48391-C4-1-R, ESP2014-54062-R, ESP 2016-76076- R, ESP2016-80435-C2-2-R, ESP2017- 87143-R, PGC2018-098153-B-C31, BES-2015-073500 and BES- 2015-074542, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, the states of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía. IAA authors acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award SEV-2017-0709. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Cientííficas (IAA-CSIC). We thank the anonymous referee for the very useful comments.

Uncontrolled Keywords:Resolution; Water
Subjects:Sciences > Physics > Astrophysics
Sciences > Physics > Astronomy
ID Code:63340
Deposited On:09 Dec 2020 18:28
Last Modified:10 Dec 2020 08:11

Origin of downloads

Repository Staff Only: item control page