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JULIÁN LÓPEZ-GÓMEZ, JUAN CARLOS SAMPEDRO

This paper is dedicated to Shair Ahmad
at the occasion of his 85th anniversary

with admiration for his mathematical work
and profound personal esteem
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Abstract. This paper tries to establish a link between topological and algebraic meth-
ods in nonlinear analysis showing how the topological degree for Fredholm operators
of index zero of Fitzpatrick, Pejsachowicz and Rabier [11] can be determined from the
generalized algebraic multiplicity of Esquinas and López-Gómez [8], [7], [22], in the same
vein as the Leray–Schauder degree can be calculated from the Schauder formula through
the classical algebraic multiplicity.

1. Introduction

In 1991, assuming that X and Y are two Banach spaces and L : [a, b] → L(X, Y ) is
a continuous path of linear Fredholm operators of index zero with invertible endpoints,
Fitzpatrick and Pejsachowicz [9, 10] introduced an homotopy invariant of L, the parity
of L on [a, b], denoted by σ(L, [a, b]), which later played a pivotal role in the construction
of a degree extending the Leray–Schauder degree to the class of Fredholm operators with
index zero, [11]. In [9] it was shown that, generically, the parity counts, modulus 2, the
number of transversal intersections of L([a, b]) with the set of singular operators between
X and Y , S(X, Y ), and that the local parity,

(1.1) σ(L, λ0) := lim
ε↓0

σ(L, [λ0 − ε, λ0 + ε]),
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remains invariant under Lyapunov–Schmidt reductions if λ0 ∈ (a, b) is an isolated singular
value of L(λ). Finally, Fitzpatrick and Pejsachowicz tried to establish that

(1.2) σ(L, λ0) = (−1)m(λ0)

for any of the existing concepts of algebraic multiplicities, m(λ0), in the context of local
and global bifurcation theory; among them, those introduced by Magnus [26], Ize [15],
Esquinas and López-Gómez [8], and Esquinas [7].

Unfortunately, in [9] it was proven less than claimed, because in 1991, it was completely
unknown whether, or not, the algebraic multiplicities of [26] and [7] were well defined.
Thus, (1.2) remained unproven in some pivotal cases from the point of view of the ap-
plications, though it was indeed established for the Ize multiplicity, [15]. However, since
the multiplicity of Ize [15] had been introduced as the order at λ0 of detL(λ) through a
preliminary Lyapunov-Schmidt decomposition for analytic paths, the Ize multiplicity is
far from being directly computable in terms of the original path of Fredholm operators,
L(λ). This explains why Fitzpatrick and Pejsachowicz [9] had to face the technical prob-
lem of the invariance of the local parity by Lyapunov–Schmidt reductions, which is rather
artificial from a purely algebraic perspective, and makes harder than necessary using the
abstract theory in many concrete applications.

It was not until 2001, that Chapters 4 and 5 of [22] characterized whether the algebraic
multiplicities of [26], [8] and [7] were well defined through the new pivotal concept of alge-
braic eigenvalue, unknown in [9]. A singular value, λ0, of a continuous path of Fredholm
operators, L(λ), is said to be k-algebraic if there exist ε > 0 and C > 0 such that L(λ) is
an isomorphism if 0 < |λ− λ0| < ε, with

(1.3) ‖L−1(λ)‖ < C

|λ− λ0|k
if 0 < |λ− λ0| < ε,

and k is the least positive integer for which (1.3) holds. It turns out that the multiplicities
of [26], [8] and [7] are well defined if, and only if, the path L(λ) is of class Cr for some r ≥ 1
and λ0 is a k-algebraic eigenvalue of L(λ) with 1 ≤ k ≤ r. According to Theorems 4.4.1
and 4.4.4 of [22], when L is analytic and L([a, b]) contains some invertible operator, then
the set of singular values of L, denoted by Σ(L), is discrete and any singular value, λ0 ∈
Σ(L), is an algebraic eigenvalue of L. Therefore, the algebraic multiplicities of Magnus
[26] and López-Gómez and Esquinas [8], [7] are well defined at these singular values. But
this problem remained open in [26] and [7]. Naturally, ten years before, Fitzpatrick and
Pejsachowicz in [9], could only use these concepts of multiplicity heuristically, but not
rigorously because it was completely unknown whether, or not, they were really defined.
It was unknown even in the context of analytic Fredholm paths of index zero.

Short time later, in 2004, Mora-Corral [27] axiomatized the theory of algebraic multi-
plicities for C∞-Fredholm paths by establishing that, modulus a normalization condition
(see Theorem 3.3), the algebraic multiplicity of Esquinas and López-Gómez, [8], [7], [22],
denoted by χ through this paper, is the unique map

χ[·, λ0] : C∞((λ0 − ε, λ0 + ε),Φ0(X)) −→ [0,∞]

satisfying the product formula

χ[L ◦M, λ0] = χ[L, λ0] + χ[M, λ0]

for every L,M ∈ C∞((λ0 − ε, λ0 + ε),Φ0(X)). In this paper, Φ0(X) stands for the set of
Fredholm operators with index zero in the Banach space X. These more recent findings,
outside the general scope of [9], [10] and [11], were covered systematically in the mono-
graph [25], where, in addition, the theory of Göhberg and Sigal [14] was substantially
generalized to a non-analytic setting and the existence of the local Smith canonical form,
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through the length of all Jordan chains of L(λ), was characterized by means of the con-
cept of k-algebraic eigenvalue. These results also characterized whether the multiplicity
of Rabier [30] is well defined.

The interest of all these algebraic multiplicities, which, as soon as they satisfy the
product formula, must equal χ, relies upon the crucial fact that, in the special case when
IX − L(λ) is compact, according to Theorem 5.6.2 of [22], χ[L, λ0] is odd if, and only if,
the Leray–Schauder degree, degLS(L(λ), BR(0)) changes as λ crosses λ0. Throughout this
paper, for any given x0 ∈ X and R > 0, BR(x0) stands for the ball of radius R centered
at x0. Thus, for any nonlinear compact perturbation of L(λ), say N(λ, x), i.e. a nonlinear
compact map such that N(λ, 0) = 0 and N(λ, x) = o(‖x‖) as x→ 0, the set of nontrivial
solutions of the equation

(1.4) L(λ)x+ N(λ, x) = 0

possesses a component bifurcating from x = 0 at λ = λ0 if and only if χ[L, λ0] is odd.
Moreover, this component satisfies the global alternative of Rabinowitz [31]. As the
number of applications of this result is huge, its mathematical relevance is considerable.
However, as in many applications L(λ) is a Fredholm path which cannot be expressed as
a compact perturbation of the identity map, the degree of Fitzpatrick, Pejsachowicz and
Rabier [11], degFPR(L(λ), BR(0)), became a powerful device from the point of view of its
applications (see [10]).

The main goal of this paper is calculating degFPR through the multiplicity χ, in a
similar way as the Leray–Schauder degree of an invertible compact perturbation of the
identity, L = IX − K, is determined from the classical algebraic multiplicity, for any
bounded open set Ω with 0 /∈ ∂Ω, through the Schauder formula

(1.5) degLS(L,Ω) = (−1)
∑q
i=1 malg[IX−L,µi]

where
Spec(IX − L) ∩ (1,∞) = {µ1, µ2, ..., µq} µi 6= µj if i 6= j,

and malg[IX − L, µi] stands for the classical algebraic multiplicity of µi as an eigenvalue
of K := IX − L and Spec(IX − L) denotes its classical spectrum. Our extension of the
Schauder formula is motivated by the fact that (1.5) can be equivalently expressed as

(1.6) degLS(L,Ω) = (−1)
∑q
i=1 χ[L,λi]

(see Theorem 3.6 of Section 3) where L(λ) is the analytic Fredholm path defined by

L(λ) := (1− λ)IX + λL, λ ∈ [0, 1],

and {λ1, λ2, ..., λq} is the set of singular values of L(λ) in (0, 1). Note that degLS(L,Ω) = 1
if this set is empty. Although the formulas (1.5) and (1.6) are equivalent, (1.6) is far
more versatile than (1.5) from the point of view of the applications, as it will become
apparent shortly. Adopting an algorithmic perspective, the Schauder formula (1.5) relies
on the classical concept of eigenvalue and algebraic multiplicity. Thus, in order to detect
through it any change of the degree of a linear mapping depending on a parameter µ,
Lµ, as µ varies, one should face the, very hard, problem of determining all the classical
eigenvalues of the operators Lµ, while, according to (1.6), it is unnecessary to determine
the classical spectrum of the operator Lµ as µ varies, but simply catching the oddities of
the (generalized) algebraic multiplicities of the path

Lµ(λ) = (1− λ)IX + λLµ, λ ∈ [0, 1],

which is a substantially simpler task from a technical point of view, as it can be accom-
plished through a finite algorithm (see [22]). Here relies the advantage of expressing the
Schauder formula in terms of the algebraic multiplicity χ. As a byproduct of (1.6), for
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any regular admissible pair, (f,Ω), with respect to the Leray–Schauder degree, it becomes
apparent that

(1.7) degLS(f,Ω) :=
∑

x∈f−1(0)∩Ω

(−1)
∑qx
i=1 χ[Lx,λx,i]

where, for every λ ∈ [0, 1] and x ∈ f−1(0) ∩ Ω,

Lx(λ) := (1− λ)IX + λDf(x), λ ∈ [0, 1],

and, for every x ∈ f−1(0) ∩ Ω,

Σ(Lx) = {λx,1, λx,2, ..., λx,qx}.
Therefore, the Leray–Schauder degree can be calculated by means of the algebraic mul-
tiplicity χ. The main result of this paper extends (1.7) to the context of the degree of
Fitzpatrick, Pejsachowicz and Rabier [11] by establishing that also this degree for Fred-
holm maps can be determined from the multiplicity χ.

Subsequently, we will denote by AF the set of admissible triples for the degree degFPR,
RF stands for the subset of AF consisting of all regular admissible triples (see Section
5), and RVf is the set of regular values of f . Given a triple, (f,Ω, ε), ε stands for an
orientation of the image Df(Ω). The main result of this paper can be stated as follows.

Theorem 1.1. Let (f,Ω, ε) ∈ AF be a Fredholm admissible triple with Ω 6= ∅. Then, for
every L ∈ Df(Ω) ∩GL(X, Y ),

degFPR(f,Ω, ε) = ε(L) ·
∑

x∈f−1(y)∩Ω

(−1)
∑
λx∈Σ(Lω,x) χ[Lω,x,λx]

where Lω,x ∈ C ω([a, b],Φ0(X, Y )) is an analytical curve C -homotopic to some curve Lx ∈
C([a, b], Df(Ω)) connecting Df(x) to L, and y = 0 if (f,Ω, ε) ∈ RF , whereas y ∈ RVf is
any regular value of f sufficiently close to 0 if (f,Ω, ε) /∈ RF .

These formulas express the degree of Fitzpatrick, Pejsachowicz and Rabier [11] in terms
of the multiplicity χ. Thus, they allow to calculate degFPR algorithmically, liberating it
of the topological artillery used in its definition. So, expressing it in a versatile way from
the point of view of the applications.

The distribution of this paper is the following. As we would like to be as much self-
contained as possible, to facilitate the reading of this technical paper Section 2 collects
the main fundamentals of the Leray–Schauder degree delivering a geometrical perspective
of it that can be easily extrapolated to the degree of [11]. Then, after reviewing the
main properties of χ, Section 3 establishes (1.6) and (1.7). In Section 4 we calculate
rigorously the parity of Fitzpatrick and Pejsachowicz [9] through the multiplicity χ and
obtain some (new) stability results that are necessary to prove Theorem 1.1. Finally,
in Section 5 we shortly review the degree of Fitzpatrick, Pejsachowicz and Rabier [11]
and characterize the orientability by using the geometrical ideas already introduced and
discussed in Section 2 in the context of the Leray–Schauder degree. The new perspective
facilitates extraordinarily the proof of Theorem 1.1, which has been delivered in Section
6. This paper concludes by extracting some simple consequences from Theorem 1.1.

2. Leray–Schauder degree and Schauder’s formula

In this section we shortly review the Leray–Schauder degree. It was introduced in [19]
to get some pioneering existence results on Nonlinear Partial Differential Equations, and
refined, very substantially, the finite-dimensional degree introduced by Brouwer [5] to
obtain his celebrated fixed point theorem. Roughly spoken, the Leray–Schauder degree
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is a generalized (topological) counter of the number of zeros that a continuous map, f ,
linear or nonlinear, can have on an open bounded subset, Ω, of a real Banach space, X.
To be defined, the map f must be a compact perturbation of the identity map. Although
this always occurs in a finite-dimensional context, it fails to be true in many important
applications.

Throughout this paper, for any given pair of real Banach spaces X, Y with X ⊂ Y , we
denote by Lc(X, Y ) the set of linear and continuous operators, L ∈ L(X, Y ), which are a
compact perturbation of the identity map, L = IX−K. Then, the linear group, GL(X, Y )
is defined as the set of linear isomorphisms L ∈ L(X, Y ). Similarly, the compact linear
group, GLc(X, Y ), is defined as GL(X, Y ) ∩ Lc(X, Y ).

The fastest way to introduce the Leray–Schauder degree proceeds through the following
axiomatizing theorem. Subsequently, for any pair of real Banach spaces X, Y such that
X ⊂ Y , any open and bounded domain Ω ⊂ X and any map f : Ω ⊂ X → Y , it is said
that (f,Ω) is an admissible pair if:

i) f ∈ C(Ω, Y );
ii) f is a compact perturbation of the identity map IX ;

iii) 0 /∈ f(∂Ω).

The class of admissible pairs will be denoted by A . Note that (IX ,Ω) ∈ A for every
open and bounded subset Ω ⊂ X such that 0 /∈ ∂Ω. Actually, (IX ,Ω) ∈ AGL, where AGL

stands for the set of admissible pairs (L,Ω) ∈ A such that L ∈ GLc(X, Y ).

Theorem 2.1. For any given pair of real Banach spaces, X, Y such that X ⊂ Y , there
exists an unique integer valued map, degLS : A → Z, satisfying the following properties:

(N) Normalization: degLS(IX ,Ω) = 1 if 0 ∈ Ω.
(A) Additivity: For every (f,Ω) ∈ A and any pair of open disjoint subsets, Ω1 and

Ω2, of Ω such that 0 /∈ f(Ω\(Ω1 ] Ω2)),

(2.1) degLS(f,Ω) = degLS(f,Ω1) + degLS(f,Ω2).

(H) Homotopy Invariance: For every homotopy H ∈ C([0, 1] × Ω, X) such that
(H(t, ·),Ω) ∈ A for each t ∈ [0, 1],

degLS(H(0, ·),Ω) = degLS(H(1, ·),Ω).

Moreover, for every (L,Ω) ∈ AGL with 0 ∈ Ω,

(2.2) degLS(L,Ω) = (−1)
∑q
i=1 malg[IX−L,µi]

where

Spec(IX − L) ∩ (1,∞) = {µ1, µ2, ..., µq} µi 6= µj if i 6= j.

The existence part of Theorem 2.1 goes back to Brouwer [5] in RN and to Leray and
Schauder [19] in arbitrary real Banach spaces. The uniqueness assertion is attributable
to Führer [13], in RN , and to Amann and Weiss [1] in the infinite-dimensional setting.
The map degLS is usually refereed to as the Leray–Schauder degree. Although it goes
back to [19], the formula (2.2) is usually referred to as the Schauder formula. It should be
recalled that, setting K := IX−L, for any eigenvalue µ ∈ Spec(K), the classical algebraic
multiplicity of µ is defined by

malg[K,µ] = dim Ker[(µIX −K)ν(µ)],

where ν(µ) is the algebraic ascent of µ, i.e. the minimal integer, ν ≥ 1, such that

Ker[(µ−K)ν ] = Ker[(µIX −K)ν+1].
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In Theorem 2.1, the axiom (N) is called the normalization property because, for every
n ∈ Z, the map n degLS satisfies the axioms (A) and (H), though not (N). Thus, the
axiom (N) normalizes the degree so that, for the identity map, it provides us with its
exact number of zeroes. The degree of a polynomial, in the plane, is nothing but its
number of zeroes on a sufficiently large disc. The degree is a generalized topological
counter of the number of zeroes that a continuous map has on an open and bounded
subset of X. The axiom (A) packages three basic properties that any counter of zeros
should satisfy. Indeed, by choosing Ω = Ω1 = Ω2 = ∅, it becomes apparent that

(2.3) degLS(f, ∅) = 0,

so establishing that no continuous map can admit a zero in the empty set. Moreover, in
the special case when Ω = Ω1]Ω2, (2.1) establishes the additivity property of the counter
of zeroes. Finally, in the special case when Ω2 = ∅, it follows from (2.1) and (2.3) that

degLS(f,Ω) = degLS(f,Ω1),

which is usually refereed to as the excision property of the degree. If, in addition, also
Ω1 = ∅, then

degLS(f,Ω) = 0 if f−1(0) ∩ Ω = ∅.
Therefore, for every (f,Ω) ∈ A such that degLS(f,Ω) 6= 0, the equation f(x) = 0 admits,
at least, a solution in Ω. This key property of the degree is refereed to as the fundamental
or solution property of the degree.

The axiom (H) establishes the invariance by homotopy of the degree. Besides it entails
that the degree is something else than the exact number of zeroes of the map f on Ω,
as, otherwise, it would not be satisfied, it endows the degree with the possibility of being
computed in the practical situations of interest from the point of view of the applications.
Nevertheless, when dealing with analytic maps in C, it coincides with the exact number
of zeroes of the map, counting orders (see, e.g., Chapter 11 of [21]).

As a rather direct application of the excision property and the axiom (H) the next
generalized version of the invariance by homotopy holds. For any given open subset
O ⊂ R×X and t ∈ R, we are denoting

Ot := {x ∈ X : (t, x) ∈ O}.

Corollary 2.2. Let a, b ∈ R be such that a < b and suppose that O is an open and
bounded subset of [a, b] × X. Let H ∈ C(O, Y ) be such that (H(t, ·, ),Ot) ∈ A for each
t ∈ [a, b]. Then,

degLS(H(t, ·),Ot) = degLS(H(a, ·),Oa) for all t ∈ [a, b].

As a by-product of Corollary 2.2, it becomes apparent that, for every L ∈ GLc(X, Y ),
x0 ∈ X, R > 0 and t ∈ [0, 1],

(2.4) degLS(L(· − x0), BR(x0)) = degLS(L(· − tx0), BR(tx0)) = degLS(L,BR),

where we are denoting BR := BR(0).
Subsequently, we introduce the set of regular admissible pairs, R, as the set of pairs

(f,Ω) ∈ A such that f ∈ C1(Ω, Y ) and Df(x) ∈ GLc(X, Y ) for all x ∈ f−1(0) ∩ Ω.
Combining the inverse function theorem with the fact that f is a compact perturbation
of IX and taking into account that f cannot admit zeroes on ∂Ω, it is apparent that
f−1(0) ∩ Ω is finite, possibly empty. Thus, in general,

f−1(0) ∩ Ω = {x1, ..., xn} if (f,Ω) ∈ R.

Now, choose a sufficiently small ε > 0 so that

Bε(xi) ∩Bε(xj) = ∅, 1 ≤ i < j ≤ n.
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Then, according to the axiom (A),

(2.5) degLS(f,Ω) =
n∑
j=1

degLS(f,Bε(xj)).

Moreover, thanks to the excision property, degLS(f,Bε(xj)) is independent of the value
of ε as soon as it is sufficiently small as to satisfy (2.5). Actually, for every j ∈ {1, ..., n},
the map

Hj(t, x) := Df(xj)(x− xj) + t[f(x)−Df(xj)(x− xj)], (t, x) ∈ [0, 1]×Bε(xj),

satisfies (Hj(t, ·), Bε(xj)) ∈ A for all t ∈ [0, 1]. Consequently, by the axiom (H), it follows
from (2.5) that

degLS(f,Ω) =
n∑
j=1

degLS(Df(xj)(· − xj), Bε(xj)).

Therefore, by (2.4), we find that, for every R > 0,

degLS(f,Ω) =
n∑
j=1

degLS(Df(xj), BR).

Consequently, if

Spec(IX −Df(xj)) ∩ (1,∞) = {µj,1, µj,2, ..., µj,qj}, 1 ≤ j ≤ n,

then, it follows from the Schauder formula that

(2.6) degLS(f,Ω) =
n∑
j=1

(−1)
∑qj
i=1 malg[IX−Df(xj),µj,i].

Conversely, one might define the Leray–Schauder degree for regular pairs through the
formula (2.6) and then use the Sard–Smale theorem, [32], [33], in order to extend it for
general admissible pairs, as e.g. in the classical textbook of Lloyd [20].

Adopting a geometrical point of view, the construction of the Leray–Schauder degree
can also be based upon the concept of orientation for X = Y . Let H ∈ C([0, 1] × Ω, X)
be a homotopy with (H(t, ·),Ω) ∈ AGL for each t ∈ [0, 1]. Since H can be regarded as
the continuous path L ∈ C([0, 1], GLc(X)) defined by L(t) := H(·, t), t ∈ [0, 1], by the
axiom (H), the integer degLS(L(t),Ω) is constant for all t ∈ [0, 1]. This introduces an
equivalence relation between the operators of GLc(X). Indeed, for every pair of operators
L0, L1 ∈ GLc(X), it is said that L0 ∼ L1 if L0 and L1 are homotopic in AGL in the sense
that L0 = L(0) and L1 = L(1) for some path L ∈ C([0, 1], GLc(X)). This equivalence
relation divides the compact linear group into two path connected components, GL+

c (X)
and GL−c (X), separated away by S(X) ∩GLc(X), where

S(X) := L(X) \GL(X),

as illustrated in Figure 1.
Conversely, if GL+

c (X) stands for the path connected component of GLc(X) containing
IX , the fact that a given operator, L ∈ GLc(X) belongs to one component, or another,
defines an orientation on L. This allows us to define a map,

(2.7) degLS(L,Ω) :=

 1 if L ∈ GL+
c (X) and 0 ∈ Ω,

−1 if L ∈ GL−c (X) and 0 ∈ Ω,
0 if L ∈ GLc(X) and 0 /∈ Ω,
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S(X) ∩GLc(X)1

−1

GL+
c (X)

GL−c (X)
GLc(X)

L

Figure 1. The two path connected components of GLc(X).

that verifies the three axioms of the Leray–Schauder degree within the class AGL and, in
particular, is homotopically invariant. Once defined the degree in AGL, one can extend
this restricted concept of degree to the regular pairs (f,Ω) ∈ R through the identity

degLS(f,Ω) =
∑

x∈f−1(0)∩Ω

degLS(Df(x),Ω).

Finally, according to the Sard–Smale theorem and the homotopy invariance property, it
can be extended to be defined for general admissible pairs, (f,Ω) ∈ A . A crucial feature
that facilitates this construction of the degree is the fact that the space GLc(X) consists
of two path-connected components. Thus, it admits an orientation. This fails to be true
in more general contexts, as it will be apparent later in Section 4.

3. The Schauder formula through the multiplicity χ

The classical spectral theory deals with straight lines L ∈ C([a, b],Lc(X, Y )) of the form
λIX −K for some compact operator K and their intersections with the space of singular
operators S(X, Y ). In this context, λ0 ∈ [a, b] is said to be an eigenvalue of the straight
line L(λ) = λIX −K if L(λ0) ∈ S(X, Y ). These linear paths, in particular, lie in the set
of Fredholm operators of index zero, Φ0(X, Y ).

More generally, given two real Banach spaces, X and Y , nonlinear spectral theory
deals with general continuous paths in Φ0(X, Y ), L ∈ C([a, b],Φ0(X, Y )), generalizing the
classical theory not only because it deals with arbitrary continuous curves, not merely
straight lines, but also because the paths can lie in Φ0(X, Y ); not only in

Lc(X, Y ) ⊂ Φ0(X, Y ).

This section collects some of the most basic concepts and results in this field. Subse-
quently, by a Fredholm path, or curve, it is meant any map L ∈ C([a, b],Φ0(X, Y )). Given
a Fredholm path, L ∈ C([a, b],Φ0(X, Y )), it is said that λ ∈ [a, b] is a generalized eigen-
value of L if L(λ) /∈ GL(X, Y ). Then, the generalized spectrum of L, Σ(L), consists of
the set of all these generalized eigenvalues, i.e.,

Σ(L) := {λ ∈ [a, b] : L(λ) /∈ GL(X, Y )}.
According to Lemma 6.1.1 of [22], Σ(L) is a compact subset of [a, b], though, in general,
one cannot say anything more about it, because for any given compact subset of [a, b], J ,
there exists a continuous function L : [a, b]→ R such that J = L−1(0).

The following concept is pivotal in nonlinear spectral theory. It was introduced in [22]
to characterize whether, or not, the algebraic multiplicity of [8] and [7] is well defined.

Definition 3.1. Let L ∈ C([a, b],Φ0(X, Y )) and k ∈ N. A generalized eigenvalue λ0 ∈
Σ(L) is said to be a k-algebraic eigenvalue if there exits ε > 0 such that
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(a) L(λ) ∈ GL(X, Y ) if 0 < |λ− λ0| < ε;
(b) There exits C > 0 such that

(3.1) ‖L−1(λ)‖ < C

|λ− λ0|k
if 0 < |λ− λ0| < ε;

(c) k is the least positive integer for which (3.1) holds.

The set of algebraic eigenvalues of L or order k will be denoted by Algk(L). Thus, the
set of algebraic eigenvalues can be defined by

Alg(L) :=
⊎
k∈N

Algk(L).

According to Theorems 4.4.1 and 4.4.4 of [22], when L(λ) is real analytic in [a, b], i.e.,
L ∈ Cω([a, b],Φ0(X, Y )), either Σ(L) = [a, b], or Σ(L) is finite and Σ(L) ⊂ Alg(L).

According to the theory developed in Chapter 7 of [25], λ0 ∈ Alg(L) if, and only if,
the lengths of all Jordan chains of L at λ0 are uniformly bounded above. This allowed to
characterize whether, or not, L(λ) admits a local Smith form at λ0.

The next concept, going back to [8], is pivotal in nonlinear spectral theory as it allows
to introduce a generalized algebraic multiplicity, χ[L, λ0], in a rather natural manner.
Subsequently, we will denote

Lj :=
1

j!
L(j)(λ0), 1 ≤ j ≤ r,

if these derivatives exist.

Definition 3.2. Let L ∈ Cr([a, b],Φ0(X, Y )) and 1 ≤ k ≤ r. Then, a given eigenvalue
λ0 ∈ Σ(L) is said to be a k-transversal eigenvalue of L if

k⊕
j=1

Lj

(
j−1⋂
i=0

Ker(Li)

)
⊕R(L0) = Y with Lk

(
k−1⋂
i=0

Ker(Li)

)
6= {0}.

For these eigenvalues, the algebraic multiplicity of L at λ0, χ[L, λ0], was introduced in
[8] through

(3.2) χ[L, λ0] :=
k∑
j=1

j · dimLj

(
j−1⋂
i=0

Ker(Li)

)
.

According to Theorems 4.3.2 and 5.3.3 of [22], for every L ∈ Cr([a, b],Φ0(X, Y )), k ∈
{1, 2, ..., r} and λ0 ∈ Algk(L), there exists a polynomial Φ : R → L(X) with Φ(λ0) = IX
such that λ0 is a k-transversal eigenvalue of the path

(3.3) LΦ := L ◦ Φ ∈ Cr([a, b],Φ0(X, Y )).

Moreover, χ[LΦ, λ0] is independent of the curve of trasversalizing local isomorphisms Φ
chosen to transversalize L at λ0 through (3.3), regardless Φ is a polynomial or not. There-
fore, the next generalized concept of algebraic multiplicity is consistent

χ[L, λ0] := χ[LΦ, λ0].

This concept of algebraic multiplicity can be easily extended by setting

χ[L, λ0] = 0 if λ0 /∈ Σ(L)

and
χ[L, λ0] = +∞ if λ0 ∈ Σ(L) \ Alg(L) and r = +∞.

Thus, χ[L, λ] is well defined for all λ ∈ [a, b] of any smooth path L ∈ C∞([a, b],Φ0(X, Y ))
and, in particular, for any analytical curve L ∈ Cω([a, b],Φ0(X, Y )). The next uniqueness
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result, going back to [27], axiomatizes it (see also Chapter 6 of [25]), much like Theorem
2.1 axiomatizes the Leray–Schauder degree.

Theorem 3.3. For every ε > 0, the algebraic multiplicity χ is the unique map

χ[·, λ0] : C∞((λ0 − ε, λ0 + ε),Φ0(X)) −→ [0,∞]

such that

(PF) For every pair L,M ∈ C∞((λ0 − ε, λ0 + ε),Φ0(X)),

χ[L ◦M, λ0] = χ[L, λ0] + χ[M, λ0].

(NP) There exits a rank one projection P0 ∈ L(X) such that

χ[(λ− λ0)P0 + IX − P0, λ0] = 1.

The axiom (PF) is the product formula and (NP) is a normalization property for estab-
lishing the uniqueness of the algebraic multiplicity. From these axioms one can derive all
the remaining properties of the generalized algebraic multiplicity χ. Among them, that
it equals the classical algebraic multiplicity when

L(λ) = λIX −K
for some compact operator K. Indeed, according to [25], for every smooth path L ∈
C∞((λ0 − ε, λ0 + ε),Φ0(X)), the following properties are satisfied:

• χ[L, λ0] ∈ N ] {+∞};
• χ[L, λ0] = 0 if, and only if, L(λ0) ∈ GL(X);
• χ[L, λ0] <∞ if, and only if, λ0 ∈ Alg(L).
• If X = RN , then, in any basis,

χ[L, λ0] = ordλ0 detL(λ).

• Let L ∈ L(X) be such that λIX − L ∈ Φ0(X). Then, for every λ0 ∈ Spec(L),
there exists k ≥ 1 such that

χ[λIX − L, λ0] = sup
n∈N

dim Ker[(λ0IX − L)n]

= dim Ker[(λ0IX − L)k] = malg[L, λ0].
(3.4)

Therefore, χ extends, very substantially, the classical concept of algebraic multiplicity.
Among the most useful properties of χ counts the product formula established by the
next result, going back to Theorem 5.6.1 of [25], where we are denoting by κ[L, λ0] the
algebraic ascent of λ0, defined, for every L ∈ Cr([a, b],Φ0(X, Y )), by

κ[L, λ0] :=

 0 if λ0 /∈ Σ(L),
k if λ0 ∈ Algk(L), k ∈ {1, ..., r},
+∞ if λ0 ∈ Σ(L) \ Alg(L).

Theorem 3.4. Let L ∈ Cr([a, b],Φ0(X, Y )), M ∈ Cs([a, b],Φ0(Y, Z)), for some r, s ∈
N ] {+∞} such that χ[L, λ0] and χ[M, λ0] are well defined and

min{r, s} ≥ κ[L, λ0] + κ[M, λ0].

Then, χ[M ◦ L, λ0] is well defined and the next product formula holds

χ[M ◦ L, λ0] = χ[M, λ0] + χ[L, λ0].

In particular, when r = s = +∞,

χ[M ◦ L, λ] = χ[M, λ] + χ[L, λ] for all λ ∈ [a, b].

The next result, going back to Theorem 5.6.1 of [22], shows that χ detects all changes
of the Leray–Schauder degree.
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Theorem 3.5. Let L ∈ Cr([a, b],L(X)) for some r ∈ N]{+∞} such that L(λ) ∈ GLc(X)
for every λ ∈ [a, b]\{λ0} and λ0 ∈ Algk(L) for some k ∈ {1, 2, ..., r}. Then, for every
R > 0,

degLS(L(λa), BR) · degLS(L(λb), BR) = (−1)χ[L,λ0]

for all λa ∈ [a, λ0) and λb ∈ (λ0, b]. Therefore, degLS(L(λ), BR) changes as λ crosses λ0

if, and only if, χ[L, λ0] is odd.

As a byproduct of Theorem 3.5 and (2.7), if χ[L, λ0] ∈ 2N + 1, then the operators of
the path L(λ) change of orientation when λ crosses λ0.

To conclude this section, we will show how the Schauder formula (2.2) can be reformu-
lated, equivalently, in terms of the generalized algebraic multiplicity χ of the canonical
homotopy between the original linear map and the identity map.

Theorem 3.6. For every (L,Ω) ∈ AGL with 0 ∈ Ω,

(3.5) degLS(L,Ω) = (−1)
∑q
i=1 χ[L,λi]

where L ∈ Cω([0, 1],Lc(X, Y )) is the analytic (linear) path defined by

L(λ) := (1− λ)IX + λL, λ ∈ [0, 1],

and

(3.6) Σ(L) = {λ1, λ2, ..., λq} ⊂ (0, 1).

Proof. As already commented above, owing to Theorems 4.4.1 and 4.4.4 of [22], Σ(L) is
finite and Σ(L) ⊂ Alg(L), because L(0) = IX and L(1) = L are invertible. The result
is obvious if Σ(L) = ∅, since in this case, IX and L are in the same path connected
component. Thus, by (2.7), degLS(L,Ω) = 1. Suppose that (3.6) holds for some q ≥ 1.
First, note that, by the definition of the segment L(λ),

Spec(IX − L) ∩ (1,∞) = {λ−1
1 , λ−1

2 , ..., λ−1
q }.

Thus, by (2.2),

(3.7) degLS(L,Ω) = (−1)
∑q
i=1 malg[IX−L,λ−1

i ].

Moreover,

χ[L, λi] = χ[(1− λ)IX + λL, λi] = χ[IX − λ(IX − L), λi]

= χ[λ(λ−1IX − (IX − L)), λi] = χ[λ−1IX − (IX − L), λi].

The last step follows from the product formula, because

χ[λ(λ−1IX − (IX − L)), λi] = χ[λIX ◦ (λ−1IX − (IX − L)), λi]

= χ[λIX , λi] + χ[λ−1IX − (IX − L), λi]

= χ[λ−1IX − (IX − L), λi].

On the other hand, by (3.4), it is apparent that

χ[λ−1IX − (IX − L), λi] = malg[IX − L, λ−1
i ].

Therefore, for every i ∈ {1, ..., q}, we find that

χ[L, λi] = malg[IX − L, λ−1
i ].

Consequently, substituting these identities in (3.7) yields

degLS(L,Ω) = (−1)
∑q
i=1 χ[L,λi].

So, completing the proof. �
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As a by-product of Theorem 3.6 and the degree formula for regular admissible pairs, the
next result holds.

Corollary 3.7. Let (f,Ω) ∈ R be a regular admissible pair with 0 ∈ Ω. Then,

(3.8) degLS(f,Ω) :=
∑

x∈f−1(0)∩Ω

(−1)
∑qx
i=1 χ[Lx,λx,i]

where, for every λ ∈ [0, 1] and x ∈ f−1(0) ∩ Ω,

Lx(λ) := (1− λ)IX + λDf(x) ∈ Cω([0, 1],Lc(X, Y ))

and, for every x ∈ f−1(0) ∩ Ω,

Σ(Lx) = {λx,1, λx,2, ..., λx,qx}.

In the particular case when X = Y , the formula (3.5) establishes a linking between the
operator L and the identity map IX , through the Fredholm path L(λ) and the generalized
algebraic multiplicity χ, which allows us to ascertain weather, or not, IX and L belong
to the same connected component of GLc(X), GL±c (X) as we can appreciate in Figure 2.
Thus, from a geometric perspective, (3.5) is substantially sharper than (2.2).

Df(x1)

Df(x2)

Df(x3)

Df(x4)

IX
Lc(X)

S(X) ∩ Lc(X)

Lx1

Lx2

Lx3

Lx4

GL+
c (X)

GL−c (X)

Figure 2. Graphic illustration of Corollary 3.7 when X = Y .

Adopting another, more algorithmic, point of view, the Schauder formula (2.2) relies
on the classical concept of eigenvalue and algebraic multiplicity. Thus, in order to detect
through it any change of the degree of a linear map depending on a parameter µ, Lµ, as
µ changes, one should face the, very hard, problem of determining all the classical eigen-
values of the operators Lµ, while, according to (3.5), determining the classical spectrum
of the operator Lµ as µ varies is unnecessary, but simply ascertaining the oddities of the
generalized algebraic multiplicities of

Lµ(λ) = (1− λ)IX + λLµ, λ ∈ [0, 1],

which is a substantially simpler task from a technical point of view.

4. Calculating the parity of Fredholm maps

We begin by studying the structure of the space of linear Fredholm operators of index zero,
Φ0(X, Y ). The space Φ0(X, Y ) is an open path connected subset of L(X, Y ). Recall that,
in general, Φ0(X, Y ) is not linear and whenever GL(X) is contractible π1(Φ0(X)) ' Z2,
where π1 stands for the first fundamental group (see [10]). For every n ∈ N, the set of
singular operators of order n is defined by

Sn(X, Y ) := {L ∈ Φ0(X, Y ) : dim Ker(L) = n}.
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Thus, the set of singular operators can be defined through

S(X, Y ) := Φ0(X, Y )\GL(X, Y ) =
⊎
n∈N

Sn(X, Y ).

According to [9], for every n ∈ N, Sn(X, Y ) is a Banach submanifold of Φ0(X, Y ) of
codimension n2. This feature allows us to regard S(X, Y ) as an hypersurface of Φ0(X, Y ).
On the other hand, by Theorem 1 of Kuiper’s article [16], the space of isomorphisms of any
separable infinite dimensional Hilbert space, H, denoted by GL(H), is path connected.
Thus, defining an orientation in GL(X, Y ) for general Banach spaces X, Y is not possible
since in general, GL(X, Y ) is path connected. This fact reveals a fundamental difference
between finite and infinite dimensional vector normed spaces, because, for every N ∈ N,
the space GLc(RN) = GL(RN) is divided into two path connected components, GL±(RN).
This situation is illustrated in Figure 3.

1

N

∞

dim

GL−
(
RN
)

GL−(R)

GL+
(
RN
)

GL+(R)

GL−c (X) GL+
c (X)

GL(X)

Figure 3. The evolution of GL(X) in terms of the dimension.

A key technical tool to overcome this difficulty in order to define the degree for Fredholm
operators of index zero is provided by the concept of parity introduced by Fitzpatrick and
Pejsachowicz in [10]. Essentially, the parity is a generalized local detector of the change
of orientability of a given admissible path. A Fredholm path L ∈ C([a, b],Φ0(X, Y )) is said
to be admissible if L(a),L(b) ∈ GL(X, Y ). Subsequently, the set of all admissible paths
will be denoted by C ([a, b],Φ0(X, Y )), and, for every r ∈ N ] {+∞, ω}, we will set

C r([a, b],Φ0(X, Y )) := Cr([a, b],Φ0(X, Y )) ∩ C ([a, b],Φ0(X, Y )).

The fastest way to introduce the notion of parity consists in defining it for C -transversal
paths, which are going to be introduced next, and then for general admissible curves
through the density of C -transversal paths in C ([a, b],Φ0(X, Y )). The density of C -
transversal curves is proven in [9]. This simplifies the scheme of Fitzpatrick and Pejsa-
chowicz [10] through the systematic use of a parametrix, whose existence requires the
technicalities of the theory of fibre bundles.

A given Fredholm path, L ∈ C([a, b],Φ0(X, Y )), is said to be C -transversal if

i) L ∈ C 1([a, b],Φ0(X, Y ));
ii) L([a, b]) ∩ S(X, Y ) ⊂ S1(X, Y ) and it is finite;
iii) L is transversal to S1(X, Y ) at each point of L([a, b]) ∩ S(X, Y ).

The curve L ∈ C1([a, b],Φ0(X, Y )) is said to be transversal to S1(X, Y ) at λ0 if

L′(λ0) + TL(λ0)S1(X, Y ) = L(X, Y ),

where TL(λ0)S1(X, Y ) stands for the tangent space to the manifold S1(X, Y ) at L(λ0).
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When L is C -transversal, the parity of L in [a, b] is defined by

σ(L, [a, b]) := (−1)k,

where k ∈ N equals the cardinal of L([a, b])∩S(X, Y ). Thus, the parity of a C -transversal
path, L(λ), is the number of times, mod 2, that L(λ) intersects transversally the singular
hypersurface S(X, Y ).

The fact that the C -transversal paths are dense in the set of all admissible curves, to-
gether with the next stability property: for any C -transversal path L ∈ C([a, b],Φ0(X, Y )),
there exists ε > 0 such that

σ(L, [a, b]) = σ(L̃, [a, b])

for all C -transversal path L̃ ∈ C([a, b],Φ0(X, Y )) such that ‖L− L̃‖∞ < ε (see [9]), allows
us to define the parity for a general admissible path L ∈ C ([a, b],Φ0(X, Y )) through

σ(L, [a, b]) := σ(L̃, [a, b]),

where L̃ is any C -transversal curve satisfying ‖L− L̃‖∞ < ε for sufficiently small ε > 0.
Originally, this concept was introduced by Fitzpatrick and Pejsachowicz via the Leray–

Schauder degree through the intermediate notion of parametrix, assigning to every Fred-
holm path L ∈ C([a, b],Φ0(X, Y )) another path Lc ∈ C([a, b],Lc(X)) with values in the
space of the compact perturbations of the identity map, Lc(X). Precisely, for any given
Fredholm path, L ∈ C([a, b],Φ0(X, Y )), a parametrix of L(λ) is any curve

P ∈ C([a, b], GL(Y,X))

such that

P(λ) ◦ L(λ) ∈ Lc(X) for all λ ∈ [a, b].

According to [10], any Fredholm path L ∈ C([a, b],Φ0(X, Y )) admits a parametrix P ∈
C([a, b], GL(Y,X)). However, the proof of this fact relies upon some nontrivial technical-
ities of the theory of fibre bundles. Once established the existence of a parametrix for
every Fredholm path, the next result establishes the precise relation between the parity
and the Leray–Schauder degree.

Theorem 4.1. Let L ∈ C ([a, b],Φ0(X, Y )) be an admissible Fredholm curve. Then, for
every parametrix P ∈ C([a, b], GL(Y,X)) of L(λ) and any R > 0,

(4.1) σ(L, [a, b]) = degLS(P(a) ◦ L(a), BR) · degLS(P(b) ◦ L(b), BR).

Actually, Fitzpatrick and Pejsachowicz [10] introduced the parity of a given Fredholm
path through the formula (4.1). Then, they established in [9] that this concept equals
the previous one. It should be noted that, although [10] was published in 1993, two years
later than [9], the reference [10] had been already included in the list of references of [9].

Subsequently, it is said that a homotopy H ∈ C([0, 1] × [a, b],Φ0(X, Y )) is admissible
if H([0, 1]× {a, b}) ⊂ GL(X, Y ), and two paths, L1 and L2, are said to be C -homotopic
if they are homotopic through an admissible homotopy. A fundamental property of the
parity is its invariance under admissible C -homotopic paths (see [10]).

Our next result establishes that, as soon as the Fredholm path L(λ) is defined in Lc(X),
every transversal intersection with S(X) induces a change of orientation, i.e., a change
of path-connected component. This fact, motivates the geometrical interpretation of the
parity as a local detector of change of orientation of the operators of a Fredholm path.

Theorem 4.2. Let L ∈ C ([a, b],Lc(X)) be an admissible curve with values in Lc(X).
Then, σ(L, [a, b]) = −1 if, and only if, L(a) and L(b) lie in different path-connected
components of GLc(X).
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Proof. Suppose that σ(L, [a, b]) = −1. Then, by Theorem 4.1, for every R > 0 and each
parametrix P ∈ C([a, b], GL(X)) of L(λ),

−1 = σ(L, [a, b]) = degLS(P(a) ◦ L(a), BR) · degLS(P(b) ◦ L(b), BR).

On the other hand, since L([a, b]) ⊂ Lc(X), the map P ∈ C([a, b], GL(X)) defined by
P(λ) = IX for all λ ∈ [a, b] is a parametrix of L(λ). Thus,

degLS(L(a), BR) · degLS(L(b), BR) = −1.

Therefore, degLS(L(a), BR) and degLS(L(b), BR) have different signs within {−1, 1}. Thus,
by (2.7), L(a) and L(b) lie in different path-connected components.

Conversely, if L(a) and L(b) are in different path-connected components, then, again
by (2.7), we find that

degLS(L(a), BR) · degLS(L(b), BR) = −1

for all R > 0. Therefore, since P(λ) = IX , λ ∈ [a, b], is a parametrix of L(λ), we can
conclude that σ(L, [a, b]) = −1. This ends the proof. �

As illustrated by Figure 4, each transversal intersection of the path L(λ) with the
singular hypersurface S(X) can be viewed as a change of path-connected component.

S(X) ∩ Lc(X)

L(a)

L(b)

L(a)

L(b)

GL+
c (X)

GL−c (X)

GL+
c (X)

GL−c (X)

Figure 4. Geometrical interpretation of the parity on Lc(X).

As the parity is a topological invariant, it is difficult to compute it even in the simplest
cases. Our next result shows how the parity of any analytic Fredholm path

L ∈ Cω([a, b],Φ0(X, Y ))

can be computed though the multiplicity χ. Since χ is an algebraic invariant, easily
computable in practice (see [22]), this result is important from the point of view of the
applications.

Theorem 4.3. Let L ∈ C ω([a, b],Φ0(X, Y )) be an analytical admissible curve. Then,

σ(L, [a, b]) = (−1)
∑n
i=1 χ[L,λi],

where Σ(L) = {λ1, λ2, ..., λn}.

Proof. By hypothesis, L(a),L(b) ∈ GL(X, Y ). Thus, by Theorems 4.4.1 and 4.4.4 of [22],
Σ(L) is finite and λ ∈ Alg(L) for all λ ∈ Σ(L). Since Σ(L) is finite, [a, b] can be divided
into intervals of the form

[a, b] =
n⋃
i=1

[ai, bi]
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with a1 = a, bn = b and λi ∈ (ai, bi) for each i ∈ {1, 2, ..., n}. Hence, by the additivity
property of the parity (see [9] and [10]), it becomes apparent that

(4.2) σ(L, [a, b]) =
n∏
i=1

σ(L, [ai, bi]).

As L(ai),L(bi) ∈ GL(X, Y ) for every i ∈ {1, 2, ..., n}, the parities σ(L, [ai, bi]) are well
defined. Let Pi ∈ C([ai, bi], GL(Y,X)) be a parametrix of L|[ai,bi] for each i ∈ {1, 2, ..., n}.
Then, according to (4.1), we have that

(4.3) σ(L, [ai, bi]) = degLS(Pi(ai) ◦ L(ai), BR) · degLS(Pi(bi) ◦ L(bi), BR),

regardless the size of R > 0. Since Pi(λ) ∈ GL(Y,X) for each λ ∈ [ai, bi], the multiplicity
χ[Pi, λi] is well defined and χ[Pi, λi] = 0. Thus, by Theorem 3.4, χ[Pi ◦ L, λi] is well
defined and

(4.4) χ[Pi ◦ L, λi] = χ[Pi, λi] + χ[L, λi] = χ[L, λi].

Hence, by Theorem 3.5, it follows from (4.4) that, for every i ∈ {1, ..., n},
(4.5) degLS(Pi(ai) ◦ L(ai), BR) · degLS(Pi(bi) ◦ L(bi), BR) = (−1)χ[Pi◦L,λi] = (−1)χ[L,λi].

Therefore, substituting (4.5) and (4.3) into (4.2) yields

σ(L, [ai, bi]) =
n∏
i=1

σ(L, [ai, bi]) = (−1)
∑n
i=1 χ[L,λi],

which ends the proof. �

More generally, the next result holds.

Theorem 4.4. Let L ∈ C r([a, b],Φ0(X, Y )) be an admissible path such that

Σ(L) = {λ1, λ2, ..., λn}
with λi ∈ Algki(L) and ki ≤ r for all i ∈ {1, ..., n}. Then,

(4.6) σ(L, [a, b]) = (−1)
∑n
i=1 χ[L,λi].

According to [22], the assumption that λi ∈ Algki(L) with ki ≤ r for all i ∈ {1, ..., n}
guarantees that χ[L, λi] is well defined and finite. The remaining technical details of the
proof of Theorem 4.4 can be adapted mutatis mutandis from the proof of Theorem 4.3.

Our next result extends Theorem 4.4 to determine the parity of a general continuous
path of Fredholm operators via homotopy techniques.

Theorem 4.5. Any continuous path L ∈ C ([a, b],Φ0(X, Y )) is C -homotopic to an ana-
lytic curve Lω ∈ C ω([a, b],Φ0(X, Y )). Moreover, for any of these analytic paths,

σ(L, [a, b]) = (−1)
∑n
i=1 χ[Lω ,λi],

where
Σ(Lω) = {λ1, λ2, ..., λn}.

Proof. First, we will show the existence of Lω. Since L is continuous and [a, b] compact,
L([a, b]) is compact. Let {Bεi(xi)}i∈I be a covering of L([a, b]) consisting of open balls
Bεi(xi) with xi ∈ L([a, b]) and εi > 0 sufficiently small so that Bεi(xi) ⊂ Φ0(X, Y ).
Observe that this εi exists since L([a, b]) ⊂ Φ0(X, Y ) and Φ0(X, Y ) is open. Then, there
exists a finite subset {i1, i2, ..., in} ⊂ I such that

L([a, b]) ⊂
n⋃
j=1

Bεij
(xij).
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By smoothing any piecewise linear approximation of L ∈
⋃n
j=1Bεij

(xij) with extremal

points L(a),L(b), we can get the existence of an analytic path

Lω ∈ Cω([a, b],Φ0(X, Y ))

such that Lω(a) = L(a), Lω(b) = L(b), and

‖Lω − L‖∞ < ε := min{εi1 , εi2 , ..., εin}.
Then, the map

H : [0, 1]× [a, b] −→ Φ0(X, Y )
(µ, λ) 7→ µLω(λ) + (1− µ)L(λ)

defines an admissible homotopy between L and Lω in Φ0(X, Y ). Indeed, since

‖µLω + (1− µ)L− L‖∞ = ‖µLω − µL‖∞ = |µ|‖Lω − L‖∞ ≤ ‖Lω − L‖∞ < ε,

for each µ ∈ [0, 1], it becomes apparent that

H([0, 1]× [a, b]) ⊂
n⋃
j=1

Bεij
(xij) ⊂ Φ0(X, Y ).

Moreover, H(·, a) = L(a) and H(·, b) = L(b). Thus, the existence of Lω gets shown. It is
fundamental to observe that the mayor difficulty for defining the homotopy is to guarantee
that

H([0, 1]× [a, b]) ⊂ Φ0(X, Y ),

which is not obvious since Φ0(X, Y ) is not linear. Thus, we needed to cover L([a, b]) with
finitely many balls, to make it sure.

By the invariance by admissible homotopies of the parity, for any of these paths Lω,

σ(L, [a, b]) = σ(Lω, [a, b]).

Therefore, by Theorem 4.3, we conclude that

σ(L, [a, b]) = σ(Lω, [a, b]) = (−1)
∑n
i=1 χ[Lω ,λi].

The proof is complete. �

Let L ∈ C([a, b],Φ0(X, Y )) and λ0 ∈ Σ(L) an isolated eigenvalue. Then, the localized
parity of L at λ0 is defined through

σ(L, λ0) := lim
ε↓0

σ(L, [λ0 − ε, λ0 + ε]).

Given L ∈ C([a, b],Φ0(X, Y )) and δ > 0, an isolated eigenvalue λ0 ∈ Σ(L) is said to be
δ-isolated if

Σ(L) ∩ [λ0 − δ, λ0 + δ] = {λ0}.

Corollary 4.6. Let L ∈ C([a, b],Φ0(X, Y )) and λ0 ∈ Σ(L) be a δ-isolated eigenvalue.
Then, for every Lω ∈ C ω([λ0 − δ, λ0 + δ],Φ0(X, Y )) C -homotopic to L|[λ0−δ,λ0+δ],

(4.7) σ(L, λ0) = (−1)
∑
λ∈Σ(Lω) χ[Lω ,λ].

Moreover, if L ∈ Cr([a, b],Φ0(X, Y )) with r ∈ N ] {∞, ω} and λ0 ∈ Algk(L) for some
1 ≤ k ≤ r, then

σ(L, λ0) = (−1)χ[L,λ0].

Proof. For the first statement, just take [a, b] = [λ0 − δ, λ0 + δ] in Theorem 4.5. The
second statement follows from Theorem 4.4 for [a, b] = [λ0 − δ, λ0 + δ] and the definition
of δ-isolated eigenvalue. �
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The identity (4.7) establishes the precise relationship between the topological notion
of parity and the algebraic concept of multiplicity. As it will become apparent in the
next section, the importance of Corollary 4.6 relies on the fact that, since the localized
parity detects any change of orientation, (4.7) makes intrinsic to the concept of algebraic
multiplicity any change of the local degree. This optimizes the detections of the changes
of the degree from a computational point of view. Figure 5 illustrates Corollary 4.6. The
superior pair of plots shows a continuous path L with parity 1 at λ0, together with a close
analytic path Lω with χ[Lω, λ0] even. In the inferior one, σ(L, λ0) = −1 and χ[Lω, λ0] is
odd.

S(X, Y ) S(X, Y )

S(X, Y ) S(X, Y )

L

L

Lω

Lω

Figure 5. Graphic illustration of Corollary 4.6.

Our last result establishes that the crossing number of any C -transversal path, L,
sufficiently close to a given analytic curve, Lω, is an invariant which is congruent (mod
2) to χ[Lω, λ0]. This evidences the relationship between the multiplicity and the number
of intersections of a perturbed path L with the singular manifold. Thus, it establishes a
sort of geometrical counterpart of the algebraic concept of multiplicity. After the local
result, we will obtain the global one. Delivering the result in this way, facilitates the
understanding of its most geometrical aspects.

Theorem 4.7. Suppose that Lω ∈ Cω([a, b],Φ0(X, Y )) and that λ0 ∈ Σ(Lω) ∩ (a, b) is
a δ-isolated eigenvalue. Then, there exists ε > 0 such that, for any C -transversal path
L ∈ C([λ0 − δ, λ0 + δ],Φ0(X, Y )) with

(4.8) ‖Lω − L‖∞,[λ0−δ,λ0+δ] < ε,

the next identity holds

(4.9) Card(Σ(L)) ≡ χ[Lω, λ0] (mod. 2).

Proof. By the analysis already done in [9], for any given compact interval J , the C -
transversal paths are dense in C (J,Φ0(X, Y )). Thus, there always exists a C -transversal
curve, L ∈ C(J,Φ0(X, Y )), such that

‖Lω − L‖∞,J < ε.

In particular, this holds true with J = [λ0 − δ, λ0 + δ].
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Set ε := min{ε1, ε2}, where ε1, ε2 > 0 satisfy

Bε1(Lω(λ0 − δ)) ∪Bε2(Lω(λ0 + δ)) ⊂ GL(X, Y ).

This ε exists because L(λ0 ± δ) ∈ GL(X, Y ) and GL(X, Y ) is open. Let

L ∈ C([λ0 − δ, λ0 + δ],Φ0(X, Y ))

be a C -transversal path satisfying (4.8). Then,

H : [0, 1]× [λ0 − δ, λ0 + δ] −→ Φ0(X, Y )
(µ, λ) 7→ µL(λ) + (1− µ)Lω(λ)

provides us with an admissible homotopy, because, for each γ ∈ {λ0 − δ, λ0 + δ},
H(µ, γ) = Lω(γ) + µ(L(γ)− Lω(γ)) ∈ Bε(Lω(γ)) ⊂ GL(X, Y )

for all µ ∈ [0, 1]. Moreover, taking ε > 0 sufficiently small, one can guarantee that

H([0, 1]× [λ0 − δ, λ0 + δ]) ⊂ Φ0(X, Y ),

much like in the proof of Theorem 4.5. Thus, by the invariance by admissible homotopies
of the parity, it follows from Theorem 4.3 that

σ(L, [λ0 − δ, λ0 + δ]) = σ(Lω, [λ0 − δ, λ0 + δ]) = (−1)χ[Lω ,λ0].

On the other hand, since Σ(L) is finite and each eigenvalue is transversal (which implies
that χ[L, λ] = 1 for λ ∈ Σ(L)), it follows from Theorem 4.4 that

σ(L, [λ0 − δ, λ0 + δ]) = (−1)
∑
λ∈Σ(L) χ[L,λ] = (−1)

∑
λ∈Σ(L) 1 = (−1)Card(Σ(L)).

Therefore,

(−1)χ[Lω ,λ0] = (−1)Card(Σ(L)),

which ends the proof. �

S(X, Y )

L
S(X, Y )

L

S(X, Y )

L

χ[Lω, λ0] = 2

Card(Σ(L)) = 2

Card(Σ(L)) = 0

Figure 6. Graphical explanation of Theorem 4.7.
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Figure 6 illustrates graphically the result of Theorem 4.7. The left plot shows a genuine
situation where χ[Lω, λ0] = 2 with Lω(λ) tangent at λ0 to the singular manifold S(X, Y ).
The two plots on the right show two admissible perturbations from the original situation
sketched on the left one. Therefore, Theorem 4.7 is optimal, in the sense that one cannot
expect, in general, to have

Card(Σ(L)) = χ[Lω, λ0].

More generally, the next result holds.

Theorem 4.8. For any given Lω ∈ C ω([a, b],Φ0(X, Y )) there exists ε > 0 such that, for
every C -transversal path L ∈ C([a, b],Φ0(X, Y )) with ‖Lω − L‖∞ < ε,

Card(Σ(L)) ≡
∑

λ∈Σ(Lω)

χ[Lω, λ] (mod. 2).

Proof. The existence of C -transversal curves satisfying the requirements of the theorem
is guaranteed by the first remark of the proof of Theorem 4.7. Now, choose ε > 0 and the
admissible homotopy H as in the previous proof, though defined in [0, 1] × [a, b]. Then,
by the invariance by admissible homotopies of the parity, Theorem 4.3 implies that

σ(L, [a, b]) = σ(Lω, [a, b]) = (−1)
∑
λ∈Σ(Lω) χ[Lω ,λ].

On the other hand, since Σ(L) is finite and each eigenvalue is 1-transversal, it follows
from Theorem 4.3 that

σ(L, [a, b]) = (−1)
∑
λ∈Σ(L) χ[L,λ] = (−1)

∑
λ∈Σ(L) 1 = (−1)Card(Σ(L)).

This ends the proof. �

5. Orientability. Fitzpatrick–Pejsachowicz–Rabier’s degree

In this section, we will collect the most basic fundamentals of the topological degree for
Fredholm operators of index zero introduced by Fitzpatrick, Pejsachowicz and Rabier
in [10] and [11]. There is another degree for Fredholm operators of index zero due to
Benevieri and Furi, [2, 3, 4], but this notion is not so intuitive geometrically as the one
introduced in [11]. Moreover, the formulation of [11] is far more suitable for establishing
the relationships between the degree and the algebraic multiplicity, though this task was
accomplished partially in [24]. A coincidence degree for a class of particular linear paths
of the form

L(λ) = L− λA, λ ∈ C,
with L Fredholm of index zero, not necessarily continuous, and a suitable linear operator
A, was introduced by Laloux and Mawhin [17, 18]. But this formulation remains outside
the main scope of this paper.

As the principal difficulty to introduce a topological degree for Fredholm operators of
index zero is the absence of orientations in the space of linear isomorphisms GL(X, Y ) ⊂
Φ0(X, Y ), we will restrict our space of operators to subsets of Φ0(X, Y ) where is possible
to introduce a notion of orientability. This is accomplished through the notion introduced
in the next definition, going back to Fitzpatrick, Pejsachowicz and Rabier [11].

Definition 5.1. A path connected subset O ⊂ Φ0(X, Y ) such that O ∩GL(X, Y ) 6= ∅, is
called orientable if there exists a map ε : O ∩GL(X, Y )→ Z2, called orientation, such
that

(5.1) σ(L, [a, b]) = ε(L(a)) · ε(L(b)) for all L ∈ C ([a, b],O).
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Actually, rather than orienting subsets of Φ0(X, Y ), in [11] were oriented, instead,
maps h : Λ → Φ0(X, Y ), where Λ is a path-connected topological space. However, if
h(Λ) ⊂ Φ0(X, Y ) is orientable in the sense of Definition 5.1 with orientation ε, necessarily
h : Λ → Φ0(X, Y ) is orientable in the sense of [11] with orientation ε(h(·)). It is worth
mentioning that Benevieri and Furi proved in [3] that if the condition

(5.2) O ∩GL(X, Y ) 6= ∅.

holds, the notion of orientation introduced by Fitzpatrick, Pejsachowicz and Rabier [11]
coincide with the one given by Benevieri and Furi in [3]. The Definition 5.1 is more
appropriate for establishing the generalized Schauder formula delivered in Section 6.

Since the parity of a Fredholm curve L can be regarded as a generalized local detector
of any change of orientation, it is natural to define an orientation ε of a subset O of
Φ0(X, Y ) as a map satisfying (5.1). Indeed, owing to (5.1), σ(L, [a, b]) = −1 if ε(L(a))
and ε(L(b)) have contrary sign. Also, note that if O is an orientable subset of Φ0(X, Y )
with orientation ε, then ε is locally constant, i.e., ε is constant on each path connected
component of O∩GL(X, Y ). This is a rather natural property of an orientation. As it is
a difficult task to ascertain whether, or not, a subset O of Φ0(X, Y ) is orientable through
Definition 5.1, the next result, going back to [11], characterizes this fact in a simple way,
though intrinsically, by means of the admissible curves in O. Note its similarity with the
standard characterization of the gradient maps in the Euclidean space.

Proposition 5.2. Let O be a a path-connected subset of Φ0(X, Y ) satisfying (5.2). Then,
the next three assertions are equivalent:

i) O is orientable.
ii) The parity σ(L, [a, b]) only depends on {L(a),L(b)} for each L ∈ C ([a, b],O).
iii) σ(L, [a, b]) = 1 for every L ∈ C ([a, b],O) with L(a) = L(b).

When O ⊂ Φ0(X, Y ) is orientable, then there are, exactly, two different orientations in
O. Precisely, given T ∈ O ∩GL(X, Y ), the two orientations of O are defined by

(5.3)
ε± : O ∩GL(X, Y ) −→ Z2

L 7→ ±σ(LLT , [a, b])

where LLT ∈ C ([a, b],O) is an arbitrary Fredholm path linking L to T , and the sign ±
determines the orientation of the path connected component of T , i.e., if we choose ε+,
then the orientation of the path connected component of T is 1, whereas it is −1 if ε− is
chosen. Incidentally, O might not have exactly two orientations when (5.2) fails, [11].

The fact that any simply connected subset O of Φ0(X, Y ) satisfying (5.2) is orientable
(see [11]) shows that the set of orientable subsets of Φ0(X, Y ) is really large. Moreover,
if O is path connected, satisfies (5.2) and its cohomology group H1(O,Z2) is trivial, then
the subset O is orientable.

Our next result establishes formally that the parity can detect locally the change of
orientability of any Fredholm curve. Note that, choosing O = Lc(X), this result provides
us with Theorem 4.2; Lc(X) is orientable because, being linear, it is simply connected.

Proposition 5.3. Let O be an orientable subset of Φ0(X, Y ) and pick L ∈ C ([a, b],O).
Then, σ(L, [a, b]) = −1 if, and only if, L(a) and L(b) are in different path connected
components of O ∩GL(X, Y ) with opposite orientations.

Proof. Let ε : O ∩GL(X, Y )→ Z2 be an orientation for O with σ(L, [a, b]) = −1. Then,
by the definition of orientation,

−1 = σ(L, [a, b]) = ε(L(a)) · ε(L(b)).
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Thus, ε(L(a)) = −ε(L(b)), which implies that L(a) and L(b) have opposite orientations.
Since ε is constant on each path-connected component, it follows that L(a) and L(b) are
in different path connected components of O with opposite orientations.

Conversely, if L(a) and L(b) are in different path-connected components of O with
opposite orientations, then, by (5.1),

σ(L, [a, b]) = ε(L(a)) · ε(L(b)) = −1,

which ends the proof. �

As a byproduct of Proposition 5.3, it becomes apparent that the algebraic multiplicity
detects locally any change of orientation of a given Fredholm curve. Thus, the localized
change of orientation of a Fredholm curve can be detected through χ.

Corollary 5.4. Let O be an orientable subset of Φ0(X, Y ), Lω ∈ C ω([a, b],O), and λ0 ∈
Σ(Lω). Then, χ[Lω, λ0] is odd if, and only if, Lω(λ0 − δ) and Lω(λ0 + δ) are in different
path-connected components of O ∩ GL(X, Y ) with opposite orientations for sufficiently
small δ > 0.

Proof. Since Lω(a) ∈ GL(X, Y ), it follows from Theorems 4.4.1 and 4.4.4 of [22], that
Σ(Lω) is finite and λ ∈ Alg(Lω) for all λ ∈ Σ(Lω). Take δ > 0 such that λ0 is δ-isolated,
thus owing to Corollary 4.6

σ(Lω, [λ0 − δ, λ0 + δ]) = (−1)χ[Lω ,λ0].

Therefore, σ(Lω, [λ0− δ, λ0 + δ]) = −1 if, and only if, χ[Lω, λ0] ∈ 2N+ 1. Now, the result
is a direct consequence of Proposition 5.3. �

Our next result generalizes, very substantially, Corollary 5.4 to cover the case of general
admissible paths and reduces the problem of detecting any change of orientation to the
problem of the computation of the local multiplicity. Thus, it establishes a sharp connec-
tion between the topological notion of orientation and the algebraic one of multiplicity,
making the concept of orientation computable.

Theorem 5.5. Let O ⊂ Φ0(X, Y ) be an orientable subset, L ∈ C([a, b],O) a Fredholm
curve and λ0 ∈ Σ(L) a δ-isolated eigenvalue. Then, the next assertions are equivalent:

(a)
∑

λ∈Σ(Lω) χ[Lω, λ0] is odd for any analytical path Lω ∈ C ω([λ0−δ, λ0+δ],Φ0(X, Y ))

such that L|[λ0−δ,λ0+δ] and Lω are C -homotopic.

(b) Card(Σ(L̃)) is odd for every C -transversal path L̃ ∈ C ([λ0 − δ, λ0 + δ],Φ0(X, Y ))
sufficiently close to L|[λ0−δ,λ0+δ].

(c) L(λ0−δ) and L(λ0+δ) live in different path-connected components of O∩GL(X, Y )
with opposite orientations.

Proof. According to Proposition 5.3, the assertion (c) is equivalent to σ(L, [λ0−δ, λ0+δ]) =
−1. Thus, by Theorem 4.3,

−1 = σ(L, [λ0 − δ, λ0 + δ]) = (−1)
∑
λ∈Σ(Lω) χ[Lω ,λ0]

for any analytic path Lω ∈ C ω([λ0 − δ, λ0 + δ],Φ0(X, Y )) C -homotopic to L|[λ0−δ,λ0+δ].
This establishes the equivalence between the assertions (a) and (c).

Now, suppose that L̃ is a C -transversal path sufficiently close to L. Then, by the
invariance by admissible homotopies of the parity applied to the homotopy of Theorem
4.8

H : [0, 1]× [λ0 − δ, λ0 + δ] −→ Φ0(X, Y )

(µ, λ) 7→ µL̃(λ) + (1− µ)L(λ)
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it is apparent that

σ(L, [λ0 − δ, λ0 + δ]) = σ(L̃, [λ0 − δ, λ0 + δ]).

On the other hand, by Theorem 4.4 and since χ[L̃, λ] = 1 for each transversal eigenvalue
λ,

σ(L̃, [λ0 − δ, λ0 + δ]) = (−1)
∑
λ∈Σ(L̃) χ[L̃,λ] = (−1)

∑
λ∈Σ(L̃) 1 = (−1)Card(Σ(L̃)).

Hence,

−1 = σ(L, [λ0 − δ, λ0 + δ]) = σ(L̃, [λ0 − δ, λ0 + δ]) = (−1)Card(Σ(L̃)).

Therefore, the assertions (b) and (c) also are equivalent. This ends the proof. �

Once introduced the notion of orientation of subsets of Φ0(X, Y ), we will introduce the
set of operators used in this paper for computing the degree of Fitzpatrick, Pejsachowicz
and Rabier [11]. Let Ω be an open and bounded subset of the Banach space X. Then, a
nonlinear operator f : Ω ⊂ X → Y is said to be C1-Fredholm of index zero if

f ∈ C1(Ω, Y ) and Df ∈ C(Ω,Φ0(X, Y )).

Subsequently, the set of all these operators is denoted by F 1
0 (Ω, Y ). A given operator

f ∈ F 1
0 (Ω, Y ) is said to be orientable when the set Df(Ω) is an orientable subset of

Φ0(X, Y ).
Moreover, for any open and bounded subset, Ω, of a Banach space X and any operator

f : Ω ⊂ X → Y satisfying

(1) f ∈ F 1
0 (Ω, Y ) is orientable with orientation ε,

(2) f is proper in Ω, i.e., f−1(K) is compact for every compact subset K ⊂ Y ,
(3) 0 /∈ f(∂Ω),

it is said that (f,Ω, ε) is a Fredholm admissible triple. By convention, the triple (f, ∅, ε)
with ε : ∅ → Z2 is considered to be an admissible triple. The set of all Fredholm
admissible triples will be denoted by AF . If 0 ∈ RVf , it is said that (f,Ω, ε) ∈ AF

is a regular triple; the class of regular Fredholm admissible triples will be denoted by
RF . A map H ∈ C1([0, 1] × Ω, Y ) is said to be a C1-Fredholm homotopy if DxH(t, ·) ∈
Φ0(X, Y ) for every t ∈ [0, 1]. Moreover, it is called orientable if DxH([0, 1] × Ω) is an
orientable subset of Φ0(X, Y ). Hereinafter, the notation εt stands for the restriction of
ε to DxH({t} × Ω) ∩ GL(X, Y ) for each t ∈ [0, 1]. The next existence result is due to
Fitzpatrick, Pejsachowicz and Rabier [11].

Theorem 5.6. There exists an integer valued map degFPR : AF → Z satisfying the next
properties:

(N) Normalization: degFPR(L,Ω, ε) = ε(L) for all L ∈ GL(X, Y ) if 0 ∈ Ω.
(A) Additivity: For every (f,Ω, ε) ∈ AF and any pair of disjoint open subsets Ω1

and Ω2 of Ω with 0 /∈ f(Ω\(Ω1 ] Ω2)) and (f,Ωi, ε) ∈ AF for each i ∈ {1, 2},
degFPR(f,Ω, ε) = degF (f,Ω1, ε) + degFPR(f,Ω2, ε).

(H) Homotopy Invariance: For each proper C1-Fredholm homotopy H ∈ C1([0, 1]×
Ω, Y ) with orientation ε such that (H(t, ·),Ω, εt) ∈ AF for each t ∈ [0, 1]

degFPR(H(0, ·),Ω, ε0) = degFPR(H(1, ·),Ω, ε1).

As for the Leray–Schauder Degree, from these three properties one can easily infer that,
whenever (f,Ω, ε) ∈ AF with degFPR(f,Ω, ε) 6= 0, there exists x ∈ Ω such that f(x) = 0.

We are concluding this section with a brief sketch of the construction of degFPR carried
over in [11]. It is needed for the proof of Theorem 1.1 delivered in Section 6. Let



24 JULIÁN LÓPEZ-GÓMEZ, JUAN CARLOS SAMPEDRO

(f,Ω, ε) ∈ AF . By definition, f ∈ F 1
0 (Ω, Y ) is C1-Fredholm of index zero and it is

ε-orientable, i.e., Df(Ω) is an orientable subset of Φ0(X, Y ) with orientation

ε : Df(Ω) ∩GL(X, Y ) −→ Z2.

Once an orientation has been defined in Df(Ω), degFPR can be defined as degLS if
(f,Ω, ε) ∈ RF . Indeed, since in such case the set f−1(0) ∩ Ω is finite, we can define,
in complete agreement with (N), (A) and (H),

degFPR(f,Ω, ε) :=
∑

x∈f−1(0)∩Ω

ε(Df(x)).

Should it be (f,Ω, ε) /∈ RF , then, by definition,

degFPR(f,Ω, ε) := degFPR(f − y,Ω, ε)
where y ∈ RVf is any regular value of f sufficiently close to 0. The existence of such
regular values is guaranteed by a theorem of Quinn and Sard [28], a version of the Sard–
Smale Theorem, [33], not requiring the separability of the involved Banach spaces.

It is worth-mentioning that degFPR extends degLS to this more general setting. Indeed,
by the definition of orientation, Lc(X) is orientable and the maps ε± : GLc(X) → Z2

defined by

(5.4) ε±(L) = ± degLS(L,Ω),

where the right hand side of (5.4) is given by (2.7), determine the two orientations of
Lc(X). Therefore, if for every (f,Ω) ∈ R we choose the orientation of f as the restriction
of ε+ to Df(Ω) ∩GL(X), then (f,Ω, ε+) ∈ RF and

degFPR(f,Ω, ε+) = degLS(f,Ω)

because

degLS(f,Ω) =
∑

x∈f−1(0)∩Ω

degLS(Df(x),Ω) =
∑

x∈f−1(0)∩Ω

ε+(Df(x)) = degFPR(f,Ω, ε+).

6. Proof of Theorem 1.1. Some consequences

We begin by recalling Theorem 1.1.

Theorem 6.1. Let (f,Ω, ε) ∈ AF be a Fredholm admissible triple with Ω 6= ∅. Then, for
every L ∈ Df(Ω) ∩GL(X, Y ),

(6.1) degFPR(f,Ω, ε) = ε(L) ·
∑

x∈f−1(y)∩Ω

(−1)
∑
λx∈Σ(Lω,x) χ[Lω,x,λx]

where Lω,x ∈ C ω([a, b],Φ0(X, Y )) is an analytical curve C -homotopic to some curve Lx ∈
C([a, b], Df(Ω)) connecting Df(x) to L, and y = 0 if (f,Ω, ε) ∈ RF , whereas y ∈ RVf is
any regular value of f sufficiently close to 0 if (f,Ω, ε) /∈ RF .

The generalized Schauder formula (6.1) expresses the degree of Fitzpatrick, Pejsachow-
icz and Rabier [11] in terms of the algebraic multiplicity χ. Thus, it allows to calcu-
late degFPR algorithmically, liberating it of the topological artillery used in its defini-
tion. In particular, expressing it in an extremely versatile way from the point of view
of the applications. It must be observed that it is always possible to choose an operator
L ∈ Df(Ω)∩GL(X, Y ) since, as Df(Ω) is orientable, necessarily, Df(Ω)∩GL(X, Y ) 6= ∅.
Figure 7 illustrates the formula (6.1) in the special case when (f,Ω, ε) ∈ RF and

f−1(0) ∩ Ω = {x1, x2, x3, x4}.
It shows four admissible paths Lxi ∈ C([a, b], Df(Ω)), 1 ≤ i ≤ 4, connecting Df(xi) to L.
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Df(x1)

Df(x2)

Df(x3) Df(x4)

L Df(Ω)

S(X, Y )

Lx1

Lx2 Lx3

Lx4

Figure 7. Graphic illustration of Theorem 6.1.

According to Figure 7, Df(x1) is in the same path connected component of Df(Ω) ∩
GL(X, Y ) as L, while Df(xi), i ∈ {2, 3, 4}, are in others. Suppose ε(L) = 1, then since ε
is constant in each path connected component

ε(Df(x1)) = 1 and ε(Df(xi)) = −1 for each i ∈ {2, 3, 4}.

Thus, by definition,

degFPR(f,Ω, ε) =
4∑
i=1

ε(Df(xi)) = −3 + 1 = −2.

In the practical situations, whether, or not, Df(xi) lies in the same component as L,
should be determined from the algebraic multiplicity χ as described next. First, for
every i ∈ {1, 2, 3, 4}, one should construct an analytical curve C -homotopic to Lxi ∈
C([a, b], Df(Ω)), say Lω,xi ∈ C ω([a, b],Φ0(X, Y )). Then, for every i ∈ {1, 2, 3, 4}, one
should determine the oddities of

Σi ≡
∑

λxi∈Σ(Lω,xi )

χ[Lω,xi , λxi ].

In the practical example of Figure 7, one has that Σ1 is even and Σ2, Σ3 and Σ4 are odd.
Therefore, by (6.1),

degFPR(f,Ω, ε) =
4∑
i=1

(−1)Σi = −2.

When (f,Ω, ε) /∈ RF , one should first pick a regular value, y, of f sufficiently close to
zero in order to apply the formula (6.1).

Proof of Theorem 6.1: It suffices to prove it when (f,Ω, ε) ∈ RF . Since Df(Ω) is
orientable, it is path connected and Df(Ω)∩GL(X, Y ) 6= ∅. Therefore, there exists such
L ∈ Df(Ω)∩GL(X, Y ). In particular, given any x ∈ f−1(0)∩Ω, there exists a Fredholm
path Lx joining Df(x) and L. By definition of orientation,

(6.2) σ(Lx, [a, b]) = ε(Df(x)) · ε(L).

Let Lω,x ∈ C ω([a, b],Φ0(X, Y )) be an analytical Fredholm curve C -homotopic to Lx ∈
C([a, b], Df(Ω)). The existence of Lω,x has been already proven in Theorem 4.5. Thus,
according to Theorem 4.5,

σ(Lx, [a, b]) = σ(Lω,x, [a, b]) = (−1)
∑
λx∈Σ(Lω,x) χ[Lω,x,λx].
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Therefore, by (6.2), it follows

ε(Df(x)) = ε(L) · (−1)
∑
λx∈Σ(Lω,x) χ[Lω,x,λx],

which concludes the proof. �

Theorem 6.1 can be simplified by introducing the following concept. A subset O of
Φ0(X, Y ) is said to be Cω-connected if for every pair of operators L, T ∈ O, there exists
an analytical path γ ∈ Cω([a, b],O) such that γ(a) = L and γ(b) = T . Note that every
open subset of Φ0(X, Y ) is Cω-connected, since being locally convex, it is possible to
connect every pair of points via a polygonal path and therefore one can get a Cω-curve
regularizing each singular point of this polygonal.

Corollary 6.2. Let (f,Ω, ε) ∈ RF be a Fredholm regular pair with Ω 6= ∅ and let L ∈
Df(Ω) ∩GL(X, Y ). If Df(Ω) is Cω-connected, then

degFPR(f,Ω, ε) = ε(L) ·
∑

x∈f−1(0)∩Ω

(−1)
∑nx
i=1 χ[Lω,x,λx,i]

where Lω,x ∈ Cω([a, b], Df(Ω)) is an analytical path joining Df(x) with L, and

Σ(Lω,x) = {λx,1, λx,2, ..., λx,nx}.

In the special case when Df(Ω) is convex, the result is simplified in an extremely
versatile form. It must be observed that since Df(Ω) is convex, it is in particular Cω-
connected.

Corollary 6.3. Let (f,Ω, ε) ∈ RF with Ω 6= ∅ and let L ∈ Df(Ω)∩GL(X, Y ). If Df(Ω)
is convex, then

degFPR(f,Ω, ε) = ε(L) ·
∑

x∈f−1(0)∩Ω

(−1)
∑nx
i=1 χ[Lω,x,λx,i]

where
Lω,x(λ) = (1− λ)Df(x) + λL, λ ∈ [0, 1],

and
Σ(Lω,x) = {λx,1, λx,2, ..., λx,nx}.

Observe that in the particular case when the orientable subset O is Lc(X), L = IX
and ε(T ) = degLS(T,Ω) for T ∈ GLc(X), where degLS(T,Ω) is given by (2.7); for each
(f,Ω) ∈ R, Corollary 6.3 coincides with Theorem 3.6.
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[5] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1911), 97–115.
[6] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971),

321–340.



ALGEBRAIC MULTIPLICITY AND TOPOLOGICAL DEGREE FOR FREDHOLM OPERATORS 27

[7] J. Esquinas, Optimal multiplicity in local bifurcation theory, II: General case, J. Diff. Equations 75
(1988), 206–215.

[8] J. Esquinas and J. López-Gómez, Optimal multiplicity in local bifurcation theory, I: Generalized
generic eigenvalues, J. Diff. Equations 71 (1988), 72–92.

[9] P. M. Fitzpatrick and J. Pejsachowicz, Parity and generalized multiplicity, Trans. Amer. Math. Soc.
326 (1991), 281–305.

[10] P. M. Fitzpatrick and J. Pejsachowicz, Orientation and the Leray–Schauder theory for fully nonlinear
elliptic boundary value problems, Mem. Amer. Math. Soc. 483, Providence, (1993).

[11] P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier, Orientability of Fredholm families and topological
degree for orientable nonlinear Fredholm mappings, J. Functional Analysis 124 (1994), 1–39.

[12] E. I. Fredholm, Sur une classe d’equations fonctionnelles, Acta Math 27, (1903), 365390.
[13] L. Führer, Theorie des Abbildungsgrades in endlichdimensionalen Räumen, Ph. D. Dissertation,
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[25] J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators,
Operator Theory, Advances and Applications vol. 177, Birkhäuser, Basel, 2007.
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