Publication:
Additivity coefficients for all classes in the algebra of Darboux-Like maps on R

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The class D of generalized continuous functions on R known under the common name of Darboux-like functions is usually described as consisting of eight families of maps: Darboux, connectivity, almost continuous, extendable, peripherally continuous, those having perfect road, and having either the Cantor Intermediate Value Property or the Strong Cantor Intermediate Value Property. The algebra A(D) of classes of functions generated by these families contains 17 atoms. In this work we will calculate the values of the additivity coefficient A(F) for all atoms F in the algebra A(D). We also determine the values A(F) for a lot of other families F∈A(D). Open questions and new directions of research shall also be provided.
Description
Keywords
Citation
[1] Aron, R.M., Bernal-Gonz´alez, L., Pellegrino, D.M., Sepulveda, J.B.S.: Lineability: The Search for Linearity in Mathematics, Monographs and Research Notes in Mathematics, p. 308. CRC Press, Boca Raton (2016) [2] Balcerzak, M., Ciesielski, K., Natkaniec, T.: Sierpi´nski–Zygmund functions that are Darboux, almost continuous, or have a perfect road. Arch. Math. Logic 37(1), 29–35 (1997). https://doi.org/10.1007/s001530050080 [3] Bartoszewicz, A., Bienias, M., Gl¸ab, S., Natkaniec, T.: Algebraic structures in the sets of surjective functions. J. Math. Anal. Appl. 441(2), 574–585 (2016). https://doi.org/10.1016/j.jmaa.2016.04.013 [4] Bernal-Gonz´alez, L., Pellegrino, D., Seoane-Sep´ulveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014). https://doi.org/10.1090/S0273-0979-2013-01421-6 [5] Brown, J.B.: Almost continuous Darboux functions and Reed’s pointwise convergence criteria. Fund. Math. 86, 1–7 (1974). https://doi.org/10.4064/fm-86-1-1-7 [6] Brown, J.B.: Connectivity, semi-continuity, and the Darboux property. Duke Math. J. 36, 559–562 (1969) [7] Bruckner, A.M., Ceder, J.G.: Darboux continuity. Jber. Deutsch. Math.-Verein. 67(Abt. 1), 93–117 (1964/1965) [8] Bruckner, A.M., Ceder, J.: On jumping functions by connected sets. Czechoslovak Math. J. 22(97), 435–448 (1972) [9] Ciesielski, K.C.: Set Theory for the Working Mathematician, London Mathematical Society Student Texts, vol.39. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9781139173131 [10] Ciesielski, K.C.: Set-theoretic real analysis. J. Appl. Anal. 3(2), 143–190 (1997). https://doi.org/10.1515/JAA.1997.143 [11] Ciesielski, K.C.: Some additive Darboux-like functions. J. Appl. Anal. 4(1), 43– 51 (1998). https://doi.org/10.1515/JAA.1998.43 [12] Ciesielski, K.C., Jastrz¸ebski, J.: Darboux-like functions within the classes of Baire one, Baire two, and additive functions. Topol. Appl. 103(2), 203–219 (2000). https://doi.org/10.1016/S0166-8641(98)00169-2 [13] Ciesielski, K.C., G´amez-Merino, J.L., Mazza, L., Seoane-Sepulveda, J.B.: Cardinal coefficients related to surjectivity, Darboux, and Sierpi´nski–Zygmund maps. Proc. Am. Math. Soc. 145(3), 1041–1052 (2017). https://doi.org/10.1090/proc/ 13294 [14] Ciesielski, K.C., Miller, A.W.: Cardinal invariants concerning functions whose sum is almost continuous. Real Anal. Exchange 20(2), 657–672 (1994/95) [15] Ciesielski, K.C., Natkaniec, T.: Algebraic properties of the class of Sierpinski–Zygmund functions. Topol. Appl. 79(1), 75–99 (1997) [16] Ciesielski, K.C., Pawlikowski, J.: The Covering Property Axiom, CPA: A Combinatorial Core of the Iterated Perfect Set Model, Cambridge Tracts in Mathematics, vol. 164. Cambridge University Press, Cambridge (2004) [17] Ciesielski, K.C., Reclaw, I.: Cardinal invariants concerning extendable and peripherally continuous functions. Real Anal. Exchange 21(2), 459–472 (1995/96) [18] Ciesielski, K.C., Rodr´ıguez-Vidanes, D.L., Seoane-Sepulveda, J.B.: Algebras of measurable extendable functions of maximal cardinality. Linear Algebra Appl. 565, 258–266 (2019). https://doi.org/10.1016/j.laa.2018.12.017 [19] Ciesielski, K., Roslanowski, A.: Two examples concerning almost continuous functions. Topol. Appl. 103(2), 187–202 (2000). https://doi.org/10.1016/S0166-8641(98)00168-0 [20] Cornette, J.L.: Connectivity functions and images on Peano continua. Fund. Math. 58, 183–192 (1966). https://doi.org/10.4064/fm-58-2-183-192 [21] Darboux, G.: M´emoire sur les fonctions discontinues. Ann. Sci. Ecole Norm. Sup.(2) 4, 57–112 (1875) [22] Darji, U.B.: A Sierpinski–Zygmund function which has a perfect road at each point. Colloq. Math. 64(2), 159–162 (1993) [23] Fast, H.: Une remarque sur la propri´et´e de Weierstrass. Colloq. Math. 7, 75–77(1959). https://doi.org/10.4064/cm-7-1-75-77[24] G´amez, J.L., Mu˜noz-Fern´andez, G.A., Seoane-Sepulveda, J.B.: Lineability and additivity in RR. J. Math. Anal. Appl. 369, 1 (2010). https://doi.org/10.1016/j.jmaa.2010.03.036 [25] Garrett, B.D., Nelms, D., Kellum, K.R.: Characterizations of connected real functions. Jber. Deutsch. Math.-Verein. 73(part1), 131–137 (1971/72) [26] Gibson, R.G., Natkaniec, T.: Darboux like functions. Real Anal. Exchange 22(2),492–533 (1996/97) [27] Gibson, R.G., Roush, F.: The Cantor Intermediate Value Property, Proceedings of the 1982 Topology Conference (Annapolis, Md., 1982). Topol. Proc. 7(1), 55–62 (1982) [28] Gibson, R.G., Roush, F.: Connectivity functions with a perfect road. Real Anal. Exchange 11(1), 260–264 (1985/86). The ninth summer real analysis symposium(Louisville, Ky., 1985) [29] Gorman, W.J.: The homeomorphic transformation of c-sets into d-sets. Proc.Am. Math. Soc. III 17, 825–830 (1966) [30] Hagan, M.R.: Equivalence of connectivity maps and peripherally continuous transformations. Proc. Am. Math. Soc. 17, 175–177 (1966) [31] Hamilton, O.H.: Fixed points for certain noncontinuous transformations. Proc. Am. Math. Soc. 8, 750–756 (1957) [32] Jones, F.B., Thomas Jr., E.S.: Connected Gδ graphs. Duke Math. J. 33, 341–345 (1966) [33] Jones, F.B.: Connected and disconnected plane sets and the functional equation f(x) + f(y) = f(x + y). Bull. Am. Math. Soc. 48, 115–120 (1942). https://doi. org/10.1090/S0002-9904-1942-07615-4 [34] Jordan, F.E.: Cardinal numbers connected with adding Darboux-like functions. Ph.D. dissertation, West Virginia University, USA (1998) [35] Jordan, F.E.: Cardinal invariants connected with adding real functions. Real Anal. Exchange 22(2), 696–713 (1996/97) [36] Jordan, F.E.: Sums of Darboux-like functions from Rn to Rm. Real Anal. Exchange 24(2), 729–759 (1998/99) [37] Kellum, K.R.: Sums and limits of almost continuous functions. Colloq. Math. 31, 125–128 (1974). https://doi.org/10.4064/cm-31-1-125-128 [38] Kuczma, M.: An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Sl¸ ´ askiego w Katowicach [Scientific Publications of the University of Silesia], 489 Uniwersytet Slaski, Katowice; Panstwowe Wydawnictwo Naukowe (PWN), Warsaw, 523, (1985). Cauchy’s equation and Jensen’s inequality; With a Polish summary [39] Kunen, K.: Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland Publishing Co., Amsterdam (1980). (an introduction to independence proofs) [40] Maximoff, I.: Sur les fonctions ayant la propri´et´e de Darboux. Prace Mat. Fiz.43, 241–265 (1936) [41] Nash, J.: Generalized Brouwer theorem. Bull. Am. Math. Soc. 62(1), 76 (1956) [42] Natkaniec, T.: Algebrability of some families of Darboux-like functions. Linear Algebra Appl. 439(10), 3256–3263 (2013). https://doi.org/10.1016/j.laa.2013.08.040 [43] Natkaniec, T.: Almost continuity. Real Anal. Exchange, 17(2), 462–520(1991/92) [44] Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, Reprinted,2nd edn. Cambridge University Press, New York (1961) [45] Plotka, K.: Sum of Sierpi´nski–Zygmund and Darboux like functions. Topol.Appl. 122(3), 547–564 (2002). https://doi.org/10.1016/S0166-8641(01)00184-5 [46] Rempe, L.: Connected escaping sets of exponential maps. Ann. Acad. Sci. Fenn. Math. 36(1), 71–80 (2011) [47] Roberts, J.H.: Zero-dimensional sets blocking connectivity functions. Fund. Math. 57, 173–179 (1965) [48] Rosen, H., Gibson, R.G., Roush, F.: Extendable functions and almost continuous functions with a perfect road. Real Anal. Exchange 17(1), 248–257 (1991/92) [49] Stallings, J.: Fixed point theorems for connectivity maps. Fund. Math. 47, 249–263 (1959) [50] Whyburn, G.T.: Connectivity of peripherally continuous functions. Proc. Nat.Acad. Sci. USA 55, 1040–1041 (1966) [51] Young, J.: A theorem in the theory of functions of a real variable. Rend. Circ.Mat. Palermo 24, 187–192 (1907)
Collections