Publication:
Projected entangled pair states: fundamental analytical and numerical limitations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-11-20
Authors
Scarpa, G.
Molnár, Andras
Gé, Y.
García-Ripoll, J.J.
Schuch, N.
Iblisdir, S.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Matrix product states and projected entangled pair states (PEPS) are powerful analytical and numerical tools to assess quantum many-body systems in one and higher dimensions, respectively. While matrix product states are comprehensively understood, in PEPS fundamental questions, relevant analytically as well as numerically, remain open, such as how to encode symmetries in full generality, or how to stabilize numerical methods using canonical forms. Here, we show that these key problems, as well as a number of related questions, are algorithmically undecidable, that is, they cannot be fully resolved in a systematic way. Our work thereby exposes fundamental limitations to a full and unbiased understanding of quantum manybody systems using PEPS.
Description
Keywords
Citation
[1] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005). [2] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. (Amsterdam) 326, 96 (2011). [3] R. Orus, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys. (Amsterdam) 349, 117 (2014). [4] J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: An introductory course on tensor networks, J. Phys. A 50, 223001 (2017). [5] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Symmetry protection of topological order in onedimensional quantum spin systems, Phys. Rev. B 85, 075125 (2012). [6] X. Chen, Z. C. Gu, and X. G. Wen, Classification of gapped symmetric phases in 1D spin systems, Phys. Rev. B 83, 035107 (2011). [7] N. Schuch, D. Perez-Garcia, and I. Cirac, Classifying quantum phases using matrix product states and PEPS, Phys. Rev. B 84, 165139 (2011). [8] F. Verstraete and J. I. Cirac, Matrix product states represent ground states faithfully, Phys. Rev. B 73, 094423 (2006). [9] M. Hastings, An area law for one dimensional quantum systems, J. Stat. Mech. P08024 (2007). [10] I. Arad, Z. Landau, U. Vazirani, and T. Vidick, Rigorous RG algorithms and area laws for low energy eigenstates in 1D, Commun. Math. Phys. 356, 65 (2017). [11] J. Haegeman, B. Pirvu, D. J. Weir, J. I. Cirac, T. J. Osborne, H. Verschelde, and F. Verstraete, Variational matrix product ansatz for dispersion relations, Phys. Rev. B 85, 100408(R)(2012). [12] S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a global symmetry, Phys. Rev. A 82, 050301 (2010). [13] B. Bauer, P. Corboz, R. Orús, and M. Troyer, Implementing global Abelian symmetries in projected entangled-pair state algorithms, Phys. Rev. B 83, 125106 (2011). [14] A. Weichselbaum, Non-Abelian symmetries in tensor networks: A quantum symmetry space approach, Ann. Phys. (Amsterdam) 327, 2972 (2012). [15] J. Haegeman, D. Perez-Garcia, I. Cirac, and N. Schuch, An Order Parameter for Symmetry-Protected Phases in One Dimension, Phys. Rev. Lett. 109, 050402 (2012). [16] F. Pollmann and A. M. Turner, Detection of symmetry protected topological phases in 1D, Phys. Rev. B 86, 125441 (2012). [17] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,Matrix product state representations, Quantum Inf. Comput. 7, 401 (2007). [18] J. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, Matrix product density operators: Renormalization fixed points and boundary theories, Ann. Phys. (Amsterdam) 378, 100 (2017). [19] G. De las Cuevas, J. I. Cirac, N. Schuch, and D. Perez-Garcia, Irreducible forms of matrix product states: Theory and applications, J. Math. Phys. (N.Y.) 58, 121901 (2017). [20] M. B. Hastings, Solving gapped Hamiltonians locally, Phys. Rev. B 73, 085115 (2006). [21] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Approximating Gibbs states of local Hamiltonians efficiently with PEPS, Phys. Rev. B 91, 045138 (2015). [22] P. Corboz, Variational optimization with infinite projected entangled-pair states, Phys. Rev. B 94, 035133 (2016). [23] L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete,Gradient methods for variational optimization of projected entangled-pair states, Phys. Rev. B 94, 155123 (2016). [24] S. Jiang and Y. Ran, Symmetric tensor networks and practical simulation algorithms to sharply identify classes of quantum phases distinguishable by short-range physics, Phys. Rev. B 92, 104414 (2015). [25] X. Chen, Z.-X. Liu, and X.-G. Wen, 2D symmetry protected topological orders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011). [26] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013). [27] O. Buerschaper, Twisted injectivity in PEPS and the classification of quantum phases, Ann. Phys. (Amsterdam) 351, 447 (2014). [28] M. B. Sahinoglu, D. Williamson, N. Bultinck, M. Marien, J. Haegeman, N. Schuch, and F. Verstraete, Characterizing topological order with matrix product operators, arXiv:1409.2150. [29] N. Bultinck, M. Mariën, D. J. Williamson, M. B. Şahinoğlu, J. Haegeman, and F. Verstraete, Anyons and matrix product operator algebras, Ann. Phys. (Amsterdam) 378, 183 (2017). [30] Z. Y. Xie, J. Chen, J. F. Yu, X. Kong, B. Normand, and T. Xiang, Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States, Phys. Rev. X 4, 011025 (2014). [31] M. Christandl, A. Lucia, P. Vrana, and A. H. Werner, Tensor network representations from the geometry of entangled states, SciPost Phys. 9, 042 (2020). [32] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem, Universitext (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001). [33] R. Berger, The undecidability of the domino problem, Mem. Am. Math. Soc. 66, 72 (1966). [34] D. Perez-Garcia, F. Verstraete, J. I. Cirac, and M. M. Wolf, PEPS as unique ground states of local Hamiltonians, Quantum Inf. Comput. 8, 0650 (2008). [35] N. Schuch, I. Cirac, and D. P´erez-García, PEPS as ground states: Degeneracy and topology, Ann. Phys. (Amsterdam) 325, 2153 (2010). [36] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.125.210504 for computational-hardness results and proof of the undecidability of the gap of parent Hamiltonians, which includes Refs. [37–41]. [37] M. W. P. Savelsbergh and P. van Emde Boas,Bounded tiling, an alternative to satisfiability?, Report Mathematisch Centrum (Amsterdam, Netherlands). Afdeling Mathematische Besliskunde en Systeemtheorie, 1984. [38] F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. A 15, 3241 (1982). [39] S. Bravyi and M. Vyalyi, Commutative version of the k-local Hamiltonian problem and common eigenspace problem, Quantum Inf. Comput. 5, 187 (2005). [40] F. Verstraete, M. M. Wolf, D. P´erez-García, and J. I. Cirac, Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States, Phys. Rev. Lett. 96, 220601 (2006). [41] S. Gharibian, Z. Landau, S. W. Shin, and G. Wang, Tensor network non-zero testing, Quantum Inf. Comput. 15, 885(2015). [42] T. Cubitt, D. Perez-Garcia, and M. M. Wolf, Undecidability of the spectral gap, Nature (London) 528, 207 (2015).
Collections