Universidad Complutense de Madrid
E-Prints Complutense

Estudio y predicción de la demanda de bicis de BiciMAD usando técnicas de minería de datos

Impacto

Downloads

Downloads per month over past year



Li, Hao (2021) Estudio y predicción de la demanda de bicis de BiciMAD usando técnicas de minería de datos. [Trabajo Fin de Máster]

[thumbnail of TFM Minería Hao Li.pdf] PDF
4MB


Abstract

En los últimos años, con el crecimiento continuo de la población urbana y la conciencia cada vez mayor de la protección del medio ambiente de las personas, ha habido un aumento del uso de bicicletas compartidas en todo el mundo. BiciMAD, como sistema de bicicletas compartidas gestionado y operado por EMT de Madrid, proporciona un servicio a los ciudadanos de bicicletas eléctricas sencillas y ecológicas. Beneficiado por la integración de tarjetas de transporte pública, y la mejora de la tecnología antirrobo y de mantenimiento de bicicletas. Este modo de viaje es buscado por más y más jóvenes.

Este Trabajo de Fin de Máster utiliza la enorme cantidad de información relevante proporcionada por los datos abiertos para estudiar el posicionamiento de los grupos de usuarios de BiciMAD, y utiliza el contenido de conducción registrado por el sistema de posicionamiento de bicicletas para estudiar la distribución del tráfico y la distribución del tiempo de uso. Además, con la ayuda del análisis de series temporales y varios algoritmos de minería de datos, se encontró el modelo más efectivo para el pronóstico de la demanda de bicicletas.

Aunque este presente trabajo es un estudio preliminar de un sistema de bicicletas compartidas de la región, sus direcciones y métodos de investigación pueden extenderse a los servicios de bicicletas compartidas en otras ciudades o temas similares.

Resumen (otros idiomas)

With the increasing number of urban population as well as the growing level of environmental awareness these days, public bike share has gained its popularity worldwide. BiciMAD, a bicycle-sharing system, managed and operated by EMT de Madrid, has provided a convenient and environmentally friendly bicycle system to residents and tourists. With the benefit of public transport integration, advances of anti-theft systems and maintenance technology in bicycles, bike sharing has become increasingly popular among the younger generation. This present dissertation identified the target market of BiciMAD, analyzed the usage patterns as well as time spent distribution of bike share using a large data volume obtained from open access databases. Moreover, with the application of time series analysis and various data mining algorithms, a predictive model for bicycle demand in a bike sharing system has been built in this study. Although this present study is a preliminary regional analysis on bicycle-sharing systems, the results and approaches from this study could be applied to the research on public bicycle share in other regions or other bike-sharing related issues.

Item Type:Trabajo Fin de Máster
Directors:
Directors
Carrasco González, Ramón Alberto
Uncontrolled Keywords:Demanda de bicicletas compartidas, Aprendizaje Automático, Series Temporales, Datos Abiertos, Long Short-Term Memory, ARIMA, Minería de Datos, BiciMAD
Palabras clave (otros idiomas):Bike Sharing Demand, Machine Learning, Time Series, Open Data, Long Short-Term Memory, ARIMA, Data Mining, BiciMAD
Subjects:Sciences > Mathematics > Stochastic processes
Sciences > Statistics
Sciences > Statistics > Operations research
Título del Máster:Máster en Minería de Datos e Inteligencia de Negocios
ID Code:64149
Deposited On:26 Feb 2021 09:56
Last Modified:26 Feb 2021 10:47

Origin of downloads

Repository Staff Only: item control page