Impact of equatorial Atlantic variability on ENSO predictive skill

Impacto

Downloads

Downloads per month over past year

Exarchou, Eleftheria and Ortega, Pablo and Rodríguez Fonseca, María Belén and Losada Doval, Teresa and Polo Sánchez, Irene and Prodhomme, Cloé (2021) Impact of equatorial Atlantic variability on ENSO predictive skill. Nature communications, 12 (1). ISSN 2041-1723

[thumbnail of RFonsecaMB 06 LIBRE+CC.pdf] PDF
Creative Commons Attribution.

1MB

Official URL: http://dx.doi.org/10.1038/s41467-021-21857-2




Abstract

El Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.


Item Type:Article
Additional Information:

© The Author(s) 2021. E.E.’s work was supported by the FP7-PREFACE project (grant agreement number: 603521) and the H2020 project TRIATLAS (grant agreement number: 817578). C.P. was supported by a Spanish Juan de la Cierva (JCI-2016-30802) fellowship and P.O. by a Ramón y Cajal (RyC-2017-22772) fellowship. B.R.d.F., T.L., and I.P. are supported by the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement 603521 (PREFACE-EU project) and the Spanish Project CGL2017-86415-R. We are grateful to Francisco J. Doblas Reyes for his valuable feedback.

Subjects:Sciences > Physics > Atmospheric physics
ID Code:65032
Deposited On:23 Apr 2021 09:29
Last Modified:23 Apr 2021 11:18

Origin of downloads

Repository Staff Only: item control page