Publication:
Poisson–Hopf deformations of Lie–Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The formalism for Poisson–Hopf (PH) deformations of Lie–Hamilton systems, recently proposed in [1], is refined in one of its crucial points concerning applications, namely the obtention of effective and computationally feasible PH deformed superposition rules for prolonged PH deformations of Lie–Hamilton systems. The two new notions here proposed are a generalization of the standard superposition rules and the concept of diagonal prolongations for Lie systems, which are consistently recovered under the non-deformed limit. Using a technique from superintegrability theory, we obtain a maximal number of functionally independent constants of the motion for a generic prolonged PH deformation of a Lie–Hamilton system, from which a simplified deformed superposition rule can be derived. As an application, explicit deformed superposition rules for prolonged PH deformations of Lie–Hamilton systems based on the oscillator Lie algebra h4 are computed. Moreover, by making use that the main structural properties of the book subalgebra b2 of h4 are preserved under the PH deformation, we consider prolonged PH deformations based on b2 as restrictions of those for h4-Lie–Hamilton systems, thus allowing the study of prolonged PH deformations of the complex Bernoulli equations, for which both the constants of the motion and the deformed superposition rules are explicitly presented.
Description
Keywords
Citation
[1] A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F.J. Herranz and J. de Lucas. Poisson–Hopf algebra deformations of Lie–Hamilton systems. J. Phys. A: Math. Theor. 51 (2018) 065202. doi:10.1088/1751-8121/aaa090 [2] A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón. Lie–Hamilton systems on the plane: properties, classification and applications. J. Differ. Equ. 258 (2015) 2873–2907. doi:10.1016/j.jde.2014.12.031 [3] A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F.J. Herranz and J. de Lucas. A unified approach to Poisson–Hopf deformations of Lie–Hamilton systems based on sl(2). In Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics, Volume 1, V. Dobrev (ed.), Springer Proceedings in Mathematics & Statistics 263, pp. 347–366. doi:10.1007/978-981-13-2715-5_23 [4] A. Ballesteros, A. Blasco, F.J. Herranz, F. Musso and O. Ragnisco. (Super)integrability from coalgebra symmetry: formalism and applications. J. Phys.: Conf. Ser. 175 (2009) 012004. doi:10.1088/1742-6596/175/1/012004 [5] J. de Lucas and C. Sard´on. A Guide to Lie Systems with Compatible Geometric Structures. (Singapore: World Scientific) 2020. doi:10.1142/q0208 [6] A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón. From constants of motion to superposition rules for Lie–Hamilton systems. J. Phys. A: Math. Theor. 46 (2013) 285203. doi:10.1088/1751-8113/46/28/285203 [7] A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón. Lie–Hamilton systems on the plane: applications and superposition rules. J. Phys. A: Math. Theor. 48 (2015) 345202. doi:10.1088/1751-8113/48/34/345202 [8] A. Ballesteros and F.J. Herranz. Lie bialgebra quantizations of the oscillator algebra and their universal R-matrices. J. Phys. A: Math. Gen. 29 (1996) 4307-4320. doi:10.1088/0305-4470/29/15/006 [9] S. Lie and G. Scheffers. Vorlesungen uber continuierliche Gruppen mit geometrischen und anderen Anwendungen (Leipzig: Teubner) 1893. [10] E. Vessiot. Sur quelques ´equations différentielles ordinaires du second ordre. Annales Fac. Sci. Toulouse 1ère Sér. 9 (1895) 1–26. doi:10.5802/afst.117 [11] H.T. Davis. Introduction to Nonlinear Differential and Integral Equations (New York: Dover) 1962. [12] P. Winternitz. Lie groups and solutions of nonlinear differential equations. In Nonlinear Phenomena (Lectures Notes in Physics 189), K.B. Wolf (ed.), (New York: Springer) 1983, pp. 263–331. [13] J.F. Cariñena, J. Grabowski and G. Marmo. Lie–Scheffers Systems: a Geometric Approach (Naples: Bibliopolis) 2000. [14] J.F. Cariñena, J. Grabowski and G. Marmo. Superposition rules, Lie theorem and partial differential equations. Rep. Math. Phys. 60 (2007) 237–258. doi:10.1016/S0034-4877(07)80137-6 [15] J.F. Cariñena, J. Grabowski and J. de Lucas. Lie families: theory and applications. J. Phys. A: Math. Theor. 43 (2010) 305201. doi:10.1088/1751-8113/43/30/305201 [16] J.F. Cariñena and J. de Lucas. Lie systems: theory, generalisations, and applications. Dissertations Math. 479 (2011) 1–162 (Rozprawy Mat.). doi:10.4064/dm479-0-1 [17] J.F. Cariñena, J. Grabowski and J. de Lucas. Superposition rules for higher order systems and their applications. J. Phys. A: Math. Theor. 45 (2012) 185202. doi:10.1088/1751-8113/45/18/185202 [18] A. Inselberg. On classication and superposition principles for nonlinear operators, Thesis (Ph.D.), University of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor, MI, 1965. [19] A. Inselberg. Superpositions for nonlinear operators. I. Strong superpositions and linearizability. J. Math. Anal. Appl. 40 (1972), 494–508. doi:10.1016/0022-247X(72)90065-0 [20] S.A. Levin. Principles of nonlinear superposition. J. Math. Anal. Appl. 30 (1970) 197–205. doi:10.1016/0022-247X(70)90192-7 [21] B.G. Konopelchenko. Elementary Backlund transformations, nonlinear superposition principle and solutions of integrable equations. Phys. Lett. A 87 (1982), 445–448. doi:10.1016/0375-9601(82)90754-X [22] S. Shnider and P. Winternitz. Classification of systems of nonlinear ordinary differential equations with superposition principles. J. Math. Phys. 25 (1984), 3155–3165. doi:10.1063/1.526085 [23] J.M. Goard and P. Broadbridge. Nonlinear superposition principles obtained by Lie symmetry methods. J. Math. Anal. Appl. 214 (1997), 633–657. doi:10.1006/jmaa.1997.5604 [24] V.A Dorodnitsyn. The non-autonomous dynamical systems and exact solutions with superposition principle for evolutionary PDEs. Ufimsk. Mat. Zh. 4 (2012), 186–195. http://mi.mathnet.ru/eng/ufa180 [25] R. Campoamor-Stursberg. Low dimensional Vessiot-Guldberg Lie algebras of second-order ordinary differential equations. Symmetry 8 (2016) 8030015. doi:10.3390/sym8030015 [26] R. Campoamor-Stursberg. A functional realization of sl(3, R) providing minimal Vessiot–Guldberg–Lie algebras of nonlinear second-order ordinary differential equations as proper subalgebras. J. Math.Phys. 57 (2016) 063508. doi:10.1063/1.4954255 [27] N.H. Ibragimov and A.A. Gainetdinova. Three-dimensional dynamical systems admitting nonlinear superposition with three-dimensional Vessiot–Guldberg–Lie algebras. Appl. Math. Lett. 52 (2016) 126–131. doi:10.1016/j.aml.2015.08.012 [28] J.F. Cariñena, J. de Lucas and C. Sardón. Lie–Hamilton systems: theory and applications. Int. J. Geom. Methods Mod. Phys. 10 (2013) 1350047. doi:10.1142/S0219887813500473 [29] F.J. Herranz, J. de Lucas and M. Tobolski. Lie–Hamilton systems on curved spaces: a geometrical approach. J. Phys. A: Math. Theor. 50 (2017) 495201. doi:10.1088/1751-8121/aa918f [30] I. Vaisman. Lectures on the Geometry of Poisson manifolds (Progress in Mathematics vol. 118)(Basel: Birkhauser Verlag) 1994. [31] V. Chari and A. Pressley. A Guide to Quantum Groups. (Cambridge: Cambridge University Press) 1994. [32] S. Majid. Foundations of Quantum Group Theory. (Cambridge: Cambridge University Press) 1995. [33] E. Abe. Hopf Algebras, Part of Cambridge Tracts in Mathematics. (Cambridge: Cambridge University Press) 2004. [34] R.S. Palais. A global formulation of the Lie theory of transformation groups. Memoirs American Math. Soc. 22 (Providence RI: American Mathematical Society) 1957. [35] J.F. Cariñena, A. Ibort, G. Marmo and G. Morandi. Geometry from Dynamics, Classical and Quantum (New York: Springer) 2015. doi:10.1007/978-94-017-9220-2 [36] A. Ballesteros, M. Corsetti and O. Ragnisco. N-dimensional classical integrable systems from Hopf algebras. Czech. J. Phys. 46 (1996) 1153–1163. doi:10.1007/BF01690329 [37] A. Ballesteros and O. Ragnisco. A systematic construction of completely integrable Hamiltonians from coalgebras. J. Phys. A: Math. Gen. 31 (1998) 3791–3813. doi:10.1088/0305-4470/31/16/009 [38] A. Ballesteros, F.J. Herranz, F. Musso and O. Ragnisco. Superintegrable deformations of the Smorodinsky–Winternitz Hamiltonian. In Superintegrability in Classical and Quantum Systems, P. Tempesta et al (eds.), CRM Proc. and Lecture Notes, vol. 37 (Providence, RI: American Mathematical Society), 2004, pp. 1–14. doi:10.1090/crmp/037/01 [39] A. Ballesteros and F.J. Herranz. Universal integrals for superintegrable systems on Ndimensional spaces of constant curvature. J. Phys. A: Math. Theor. 40 (2007) F51–F59. doi:10.1088/1751-8113/40/2/F01 [40] A. González-López, N. Kamran and P.J. Olver. Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 64 (1992) 339–368. doi:10.1112/plms/s3-64.2.339 [41] H.A. Buchdahl. A relativistic fluid sphere resembling the Emden polytrope of index 5. Astrophys. J. 140 (1964) 1512–1516. doi:10.1086/148055 [42] V.K. Chandrasekar, M. Senthilvelan and M. Lakshmanan. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461 (2005) 2451–2477. doi:10.1098/rspa.2005.1465 [43] J.L. Cieslinski and T. Nikiciuk. A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A: Math. Theor. 43 (2010) 175205. doi:10.1088/1751-8113/43/17/175205 [44] D.P. Tsvetkov. A periodic Lotka–Volterra system. Serdica Math. J. 22 (1996) 109–116. journalpdf [45] Z. Jin, H. Maoan and L. Guihua. The persistence in a Lotka–Volterra competition systems with impulsive. Chaos Solitons Fractals 24 (2005) 1105–1117. doi:10.1016/j.chaos.2004.09.065 [46] C. Muriel and J.L. Romero. λ-symmetries of some chains of ordinary differential equations. Nonlinear Anal.: Real World Appl. 16 (2014) 191–201. doi:10.1016/j.nonrwa.2013.09.018 [47] H. Zoladek. The method of holomorphic foliations in planar periodic sy ˙ stems: the case of Riccati equations. J. Differ. Equ. 165 (2000) 143–173. doi:10.1006/jdeq.1999.3721 [48] A. Marino. Topological methods, variational inequalities and elastic bounce trajectories. Rend. Lincei Mat. Appl. 22 (2011) 269–290. doi:10.4171/RLM/600 [49] A. Ballesteros, F.J. Herranz and J. Negro. Boson representations, non-standard quantum algebras and contractions. J. Phys. A: Math. Gen. 30 (1997) 6797–809. doi:10.1088/0305-4470/30/19/018 [50] A. Ballesteros, F.J. Herranz and P. Parashar. A Jordanian quantum two-photon/Schrodinger algebra. J. Phys. A: Math. Gen. 30 (1997) 8587–8597. doi:10.1088/0305-4470/30/24/019 [51] V.G. Drinfel’d. Constant quasiclassical solutions of the Yang–Baxter quantum equation. Dokl. Akad. Nauk SSSR. 273 (1983) 531–535. http://mi.mathnet.ru/eng/dan9865 [52] V.G. Drinfel’d. Quasi-Hopf algebras. Leningrad Math. J. 1 (1990) 1419–1457. http://mi.mathnet.ru/eng/aa53 [53] N. Reshetikhin. Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20 (1990) 331–335. doi.org/10.1007/BF00626530 [54] O. Ogievetsky. Hopf structures on the Borel subalgebra of sl(2). In Proc. Winter School “Geometry and Physics”, J. Bures and V. Soucek (eds.), Rendiconti Cir. Math. Palermo, ser. II, suppl. 37 (1994) 185–199. https://dml.cz/handle/10338.dmlcz/701555 [55] P.P. Kulish and A.A. Stolin. Deformed yangians and integrable models. Czech. J. Phys . 47 (1997) 1207–1212. doi:10.1023/A:1022869414679 [56] A. Ballesteros, F.J. Herranz, J. Negro and L.M. Nieto. Twist maps for non-standard quantum algebras and discrete Schr¨odinger symmetries. J. Phys. A: Math. Gen. 33 (2000) 4859–4870. doi:10.1088/0305-4470/33/27/303 [57] O. Esen, E. Fernández-Saiz, C. Sardón and M. Zaj¸ac. Geometry and solutions of an epidemic SIS model permitting fluctuations and quantization. arXiv:2008.02484
Collections