Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV

Impacto

Downloads

Downloads per month over past year

Baquero Larriva, Orlando Andrés and Barrio Uña, Juan Abel and Contreras González, José Luis and Fonseca González, Mª Victoria and Hoang, Kim Dinh and López Moya, Marcos and Miener, Tjark and Morcuende, D. and Peñil del Campo, Pablo and Saha, Lab (2020) Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV. Astronomy & Astrophysics, 643 . ISSN 0004-6361

[thumbnail of ContrerasJL36libre.pdf]
Preview
PDF
290kB

Official URL: https://doi.org/10.1051/0004-6361/202039131




Abstract

We report the detection of pulsed gamma-ray emission from the Geminga pulsar (PSR J0633+1746) between 15 GeV and 75 GeV. This is the first time a middle-aged pulsar has been detected up to these energies. Observations were carried out with the MAGIC telescopes between 2017 and 2019 using the low-energy threshold Sum-Trigger-II system. After quality selection cuts, similar to 80 h of observational data were used for this analysis. To compare with the emission at lower energies below the sensitivity range of MAGIC, 11 years of Fermi-LAT data above 100 MeV were also analysed. From the two pulses per rotation seen by Fermi-LAT, only the second one, P2, is detected in the MAGIC energy range, with a significance of 6.3 sigma. The spectrum measured by MAGIC is well-represented by a simple power law of spectral index Gamma =5.62 +/- 0.54, which smoothly extends the Fermi-LAT spectrum. A joint fit to MAGIC and Fermi-LAT data rules out the existence of a sub-exponential cut-off in the combined energy range at the 3.6 sigma significance level. The power-law tail emission detected by MAGIC is interpreted as the transition from curvature radiation to Inverse Compton Scattering of particles accelerated in the northern outer gap.


Item Type:Article
Additional Information:

© ESO 2020. Artículo firmado por 192 autores. The authors would like to thank Matthew Kerr for helping in the production of the ephemeris used in this analysis. We would also like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C2-2-P, FPA2017-90566-REDC); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-268/16.12.2019 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" SEV-2016-0588 and SEV-2015-0548, the Unidad de Excelencia "María de Maeztu" MDM-2014-0369 and the "la Caixa" Foundation (fellowship LCF/BQ/PI18/11630012), by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382, by the Brazilian MCTIC, CNPq and FAPERJ, and at HKU by a GRF grant (Project 17307618) from the Hong Kong Government.

Uncontrolled Keywords:Gamma-ray pulsars; Major upgrade; X-ray; Telescopes; Radiation; Parallax
Subjects:Sciences > Physics > Nuclear physics
ID Code:66362
Deposited On:25 Jun 2021 10:15
Last Modified:25 Jun 2021 10:57

Origin of downloads

Repository Staff Only: item control page