Detección de vehículos en movimiento en vídeos mediante técnicas de aprendizaje profundo
Detection of moving vehicles in videos using deep learning techniques

Impacto

Downloads

Downloads per month over past year



Avilés Camarmas, Marcos and Berzosa Tordesillas, Álvaro and Granizo Egido, Jesús (2021) Detección de vehículos en movimiento en vídeos mediante técnicas de aprendizaje profundo. [Trabajo Fin de Grado]

[thumbnail of BERZOSA TORDESILLAS 84320_ALVARO_BERZOSA_TORDESILLAS_Deteccion_de_vehiculos_en_movimiento_en_videos_mediante_tecnicas_de_aprendizaje_profundo_784051_305753491.pdf]
Preview
PDF
Creative Commons Attribution Non-commercial.

4MB



Abstract

En este trabajo se presenta una aplicación para la identificación de vehículos en vías urbanas mediante técnicas de detección del movimiento en imágenes y aprendizaje profundo para su identificación.
Mediante el entrenamiento de redes neuronales convolucionales como AlexNet y GoogLeNet se procede a la detección de vehículos en una serie de videos previamente cargados por el usuario.
La aplicación permite al usuario ajustar los parámetros de entrenamiento de las redes neuronales, realizar dicho entrenamiento y cargar un video para la posterior detección de los vehículos. Adicionalmente, se procede a la carga de dichos resultados a la red social Twitter para su difusión.
En el trabajo se realiza un análisis y valoración de resultados, tanto en la fase de entrenamiento como en la de decisión.

Resumen (otros idiomas)

Identification of vehicles on urban roads using motion detection techniques in images and deep learning for their identification. By training convolutional neural networks such as AlexNet or GoogLeNet, vehicles are detected in a series of videos previously uploaded by the user. The present work will consist on the creation of an application in which the user is allowed to adjust the training parameters of the neural networks, carry out said training and upload a video for the subsequent detection of the vehicles. Additionally, these results are uploaded to the social network Twitter for dissemination. In this work, an analysis and evaluation of results is carried out, both in the training phase and in the decision phase.

Item Type:Trabajo Fin de Grado
Additional Information:

Trabajo de Fin de Grado en Ingeniería del Software, Facultad de Informática UCM, Departamento de Ingeniería del Software e Inteligencia Artificial, Curso 2020/2021, descargar el código del repositorio de Github: https://github.com/JesusGranizo/Codigo

Directors:
Directors
Pajares Martinsanz, Gonzalo
Uncontrolled Keywords:Aprendizaje profundo, Segmentación de regiones, Redes neuronales convolucionales, Flujo óptico, Internet de las cosas, Ciudades inteligentes.
Palabras clave (otros idiomas):Deep Learning, Region segmentation, Convolutional neural network, Optical flow, Internet of the Things, Smart Cities.
Subjects:Sciences > Computer science
Título de Grado:Grado en Ingeniería del Software
ID Code:66939
Deposited On:14 Jul 2021 14:23
Last Modified:14 Jul 2021 14:23

Origin of downloads

Repository Staff Only: item control page