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Abstract 

We use non-parametric methods to propose horizontal inequity (HI) measures that satisfy 
certain normative and statistical properties. The HI measures tackle the problem of 
arbitrary definition of similar individuals and satisfy the horizontal transfer principle. HI is 
measured by any index consistent with the distance between the estimated and actual 
post-tax income Lorenz curves. This incorporates an ordinal view of HI. The total effect of a 
tax system can be decomposed into welfare gain due to income redistribution free of HI 
and welfare loss due to HI. Other indices in the literature can be seen as particular cases. 
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1. Introduction 

The principle of horizontal equity states that equals should be treated 

equally (Feldstein, 1976). Nevertheless, a principle as simple as this has 

generated a long list of indices to measure the absence of horizontal equity. 

This is primarily because of the difficulty of finding individuals exactly equal 

with respect to their equivalent incomes. The principle of horizontal equity 

should therefore be interpreted in a much less restrictive way to measure 

the horizontal inequity (HI) from any tax system.  

There are two main alternative approaches for measuring HI, each 

corresponding to a different interpretation of this concept. Reranking 

analysis focuses on the measurement of the HI induced by the transition 

from pre-tax to post-tax distribution of income (i.e., Atkinson, 1980, 

Plotnick, 1981, King, 1983 and Duclos, 1993). Alternative analyses 

concentrate on the different treatments received by uniform or similar 

individuals (i.e., Berliant and Strauss, 1985, Aronson et al. 1994, Lambert 

and Ramos 1997, Camarero et al., 1993 or Pazos et al., 1995). An important 

deficiency of these indices is the definition of similar individuals, obtained 

through the division of individuals' incomes into arbitrary intervals. In 

empirical work, the problem of this ad hoc definition is reduced through a 

bandwidth sensitivity analysis. This weakness can, however, be solved by 

non-parametric estimation, as in Lambert and Parker (1997) and Duclos 

and Lambert (2000).  
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In this paper we apply non-parametric methods to construct a general 

index to measure HI with the following characteristics. First, we improve the 

choice of similar individuals and justify it by the use of a purely statistical 

criterion that is free from any normative consideration. The identification 

problem is solved intrinsically by a smoothing technique that optimizes the 

trade-off between the bias and variance of the estimation (low and large 

endogenous intervals). 

Second, the proposed general index class has normative implications 

in terms of the so-called horizontal transfer principle, and in terms of Lorenz 

domination that shares similarities with the reranking approach by 

Atkinson (1980) and Plotnick (1981), and the close-equals approach by 

Aronson et al. (1994) and Lambert and Ramos (1997). Nevertheless, the 

reranking approach may be criticized, as reranking is a sufficient, but not a 

necessary, condition for HI to exist. On the other hand, the close-equals 

approach uses a particular cardinal representation (Gini coefficient or mean 

logarithmic deviation) that is unnecessary in our framework. Any (ordinal) 

S-convex2 measure can be used in our methodology. Besides, the Aronson 

et al. (1994) and the "pure" approach by Lambert and Ramos (1997) make 

the assumption of zero inequity among pre-tax similar individuals. Both 

assumptions are unnecessary in our setting. Finally, the approach by 
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Lambert and Ramos (1997) also defines the pseudo-horizontal effect of the 

tax system, a measure that could be negative, depending on the bandwidth 

(Lambert and Ramos, 1997, p. 30).  In addition, we need not restrict our 

measurement to homothetic social evaluation functions, as in Duclos and 

Lambert (2000). Moreover, they do not decompose the overall redistributive 

effect.    

Third, we demonstrate that the Aronson et al. (1994) and the "pure" 

approach by Lambert and Ramos (1997) are particular cases of our 

methodology. This is the case when the non-parametric estimation adopts 

the particular regressogram form over the given exogenous non-overlapping 

intervals.  

A final property of our class of indices that is preserved in our more 

general context is the additively decomposability of the overall redistributive 

effect of the tax system into vertical redistribution and HI.  

The structure of the paper is as follows. An intuitive graphical idea of the 

HI is given in Section 2. In Section 3 we suggest how to solve the 

identification problem of similar individuals by using non-parametric 

methods. In Section 4, we define the measure of HI, normative properties in 

terms of Lorenz domination are derived and we decompose the 

redistributive effect of the tax system into vertical and horizontal 

                                                                                                                                                        
2 A measure I: R n

++ →R is S-convex if I(Y)≥I(AY), for all bistochastic matrix A (see 
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components. Section 5 demonstrates that the Aronson et al. (1994) and 

Lambert and Ramos (1997) 'pure' approach are particular cases of our 

methodology. Section 6 consists of conclusions. 

 

 

 

 

 

2. Graphical notion of horizontal inequity 

We start by giving an intuitive idea of the HI notion used throughout 

this paper.3 First, we compare Figures 1 and 2 that show the scatter plot of 

the pre-tax income (Xi) and the post-tax income (Yi) for the following two 

polar cases. In Figure 1 we depict the post-tax incomes for a proportional 

tax system across homogeneous individuals. All individuals are treated 

equally by this tax system. Zero HI is involved. A clear one-to-one (or 

functional) relationship between pre- and post-tax income arises in this 

case. In contrast, in Figure 2 we present the post-tax income values 

emanating from a tax system with deductions that generates HI. It can be 

seen how similar individuals receive different fiscal treatments. The one-to-

one relationship is no longer satisfied. The key questions are whether or not 

                                                                                                                                                        
Appendix).  
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there is a one-to-one relationship, and what is the intensity of such a 

relationship.   

We try to answer these questions using a regression curve, as in Figure 

3, that presents the estimated (theoretical) value of the post-tax income 

associated with a given pre-tax income. This is the underlying one-to-one 

relationship between these variables. The more dispersed are the values of 

the post-tax incomes, the higher the HI caused by the tax system. Hence 

deviations from the theoretical curve capture the notion of HI, and the slope 

of the theoretical curve itself captures the notion of vertical progressivity.  

 

3. Non-parametric solutions to the identification problem 

The theoretical function can be approximated either by parametric or 

non-parametric estimation. While the parametric approach assumes that 

the estimated curve and, therefore, the tax system have some pre-specified 

functional form, the non-parametric approach estimates the response 

without reference to a specific form. This is more realistic in the taxation 

case where effective marginal tax rates normally do not follow a specific 

functional form.  

The result of the non-parametric smoothing estimation is a continuous 

function with an almost constant structure in a small neighbourhood of Xi. 

                                                                                                                                                        
3 This idea has been developed in papers, such as Lambert and Parker (1997) and Jenkins and Lambert 
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The smoothing of the data set consists of calculating a local average of the 

dependent variable (Yi) near Xi. Each value of the dependent variable is 

multiplied by a weight, 1...nii )}{W(X = , that may depend on the whole vector 

1...nii )}{(X = .  

Another advantage of the non-parametric estimation is that it 

overcomes the identification problem. The choice of the size of the intervals 

for similar individuals depends on the data available and the optimal 

smoothing technique. This is not an arbitrary criterion, such as dividing the 

pre-tax equivalent income4 in a set of groups of individuals (i.e., deciles, 

centiles or income brackets). The non-parametric estimation optimizes the 

trade-off between a good approximation to the regression function and a 

good reduction of the observational noise. If we only minimize the bias of 

the estimation, interpolating the data produces a large variance. On the 

other hand, if we minimize the variance through a constant estimation, we 

have a high bias and large misspecification. The proposed estimator 

achieves the trade-off between bias and variance.  

What does this mean in terms of equity? When the size of the intervals 

is small, we minimize the bias but increase the probability of considering as 

different those individuals with rather close incomes. Asymptotically, we 

                                                                                                                                                        
(1999). 
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have that each individual belongs to a different interval and all individuals 

are different. The HI disappears in this case. However, when the size of the 

interval is large, we minimize the variance but increase the probability of 

considering as similar those individuals with rather different incomes. 

Asymptotically, all individuals are similar and the HI is maximized.  

Thus the methodology we propose in this paper minimizes the global 

error that appears when we create a set of bands that identify similar 

individuals along the pre-tax equivalent income scale. An arbitrary criterion, 

such as dividing the pre-tax equivalent income in a set of groups of identical 

number of individuals, does not minimize the global error. In the next 

section we show the normative implications of this methodology. We see 

that a formal definition of HI and some restrictions on the non-parametric 

technique are required.    

 

 

 

4. HI measurement and normative properties 

                                                                                                                                                        
4 This is the common criterion used by the close-equals approach. Alternatively, 
Jenkins (1988) proposes the use of partitions comprising members sharing the same 
pre-tax money income and the same type of "fair" characteristics.  
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In this section, we tackle the central point of the paper, which is to 

provide an ordinal decomposition of the total redistribution effect of tax RE 

into vertical redistribution VR and horizontal inequity, such that RE=VR-HI.  

 

Definition: Total Redistribution, Vertical Redistribution and Horizontal 

Inequity 

Given a pre-tax income distribution X∈R n
++ , and a post-tax income 

distribution Y∈ R n
++ , with the estimated income distribution Z∈ R n

++  using 

the non-parametric technique, we define: 

 

RE(X,Y)=I(X)-I(Y) 

VR(X,Y)=I(X)-I(Z) 

HI(X,Y)=I(Y)-I(Z) 

 

where I: R n
++ →R is S-convex. HI is measured by an index consistent with the 

distance between the estimated post-tax income and the actual post-tax 

income Lorenz curves. Formally, this distance concept can be defined as 

follows. 

Given any pre-tax income distribution X and any post-tax income 

distribution Y, with an estimated distribution Z, if Z (weakly) Lorenz 

dominates Y, denoted by Z ≥L Y, then HI(X,Y) ≥ 0. Moreover, given any two 
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post-tax income distributions Y and Y', with different estimated 

distributions Z and Z', if Y ≥L Y' and Z' ≥L Z, then HI(X,Y') ≥ HI(X,Y). A 

fundamental property of this HI definition is that we allow for the use of any 

(ordinal) S-convex index.5   

We establish a formal principle that imposes a minimum requirement 

which we consider any HI definition should satisfy. Our above definition, 

plus some minimal requirements on the non-parametric estimation, is 

consistent with this axiom, as seen below. Formally this principle can be 

stated as follows: 

 

Axiom: the horizontal transfer principle 

Consider any pre-tax income distribution X ∈ R n
++  and any post-tax 

income distribution Y ∈ R n
++ . Let Y' be another post-tax income distribution, 

which could be generated from Y by a horizontal reducing transfer (HRT) that 

consists of a fixed amount of income ε>0 between two persons with the 

same pre-tax income but Yi ≥ Yj, such that Yi'= Yi -ε ≥ Yj'=Yj+ε, then HI 

                                                 
5 The vertical and overall redistribution distance concept can be rationalized 
accordingly. Thus, we can decompose the distance from the Lorenz curve for the pre-
tax income (LX) to the Lorenz curve for the post-tax income (LY), which is the total effect 
of the tax system on the original distribution of income, into two different elements: 
the vertical redistribution and the HI. The first is the distance from the Lorenz curve 
for the pre-tax income (LX) to the Lorenz curve for the theoretical (estimated) post-tax 
income (LZ). 
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should be reduced. On the other hand, a horizontal enhancing transfer, 

that is Yi'= Yi +ε ≥ Yj'=Yj-ε, increases HI. 

Not all non-parametric estimation methods make the HI measure 

consistent with this axiom. Our proposal uses the reformulated bistochastic 

non-parametric estimators proposed in Rodríguez and Salas (2001), where 

the weights matrix is bistochastic (see Appendix). Any HRT is consistent 

with the Lorenz dominance criterion. Under any HRT, Y' (weakly) Lorenz 

dominates Y, and Z'=Z.6 Then HI measures, based on bistochastic non-

parametric estimations, are consistent with the horizontal transfer 

principle. 

There is an obvious link with welfare analysis. Within our framework a 

horizontal reducing transfer increases welfare, according to any individual 

social welfare function that is increasing and S-concave. This is so because 

average incomes of Y, Y' and Z are the same, under the bistochastic non-

parametric estimation; and also because of the estimated post-tax income 

distribution Z does not change, while Y' (weakly) Lorenz dominates the 

post-tax income distribution Y.  

Moreover, due to the bistochastic non-parametric estimation, the 

estimated post-tax income distribution Z (weakly) Lorenz dominates the 

                                                 
6 An innocuous sufficient condition for our proposal to be applied is that the weights 
are probabilistic (normal and non-negative) on the random variable X. Most of the non-
parametric methods in the literature satisfy this condition. 
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post-tax income distributions Y and Y'. The theoretical (estimated) post-tax 

income distribution Z, when the tax system does not cause any HI, is always 

as preferred as the observed post-tax income distribution Y and Y' (see 

Atkinson (1970) and Dasgupta et al. (1973). Formally, we state the following 

proposition: 

 

 

 

Proposition 1:  

Consider any pre-tax income distribution X ∈ R n
++  and any post-tax 

income distribution Y ∈ R n
++ . Let Y' be another post-tax income distribution, 

generated from Y by a horizontal reducing transfer, and Z generated by any 

bistochastic non-parametric estimation, then: 

 

)()'()( YWYWZW ≥≥  

 

for any W(.) individual social welfare function that is increasing and ordinal 

S-concave. 

The proof uses ZYY µµµ == '  and Z ≥L Y' ≥L Y. An application of the 

theorems of Atkinson (1970) and Dasgupta et al. (1973) obtains the result. 
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Another advantage of the proposed index, implicit in this above 

proposition, is that HI is always non-negative.7 Moreover, HI is strictly 

positive whenever there is any deviation of the actual post-tax income 

distribution from the estimated post-tax regression curve. Zero HI is 

guaranteed if both distributions coincide. This was the intuition highlighted 

in Section 2. 

 

 

5. Towards a unified framework 

In this section we point out the links between the proposed 

methodology and the alternatives. The normative implications in terms of 

Lorenz domination are features shared by the reranking approach of 

Atkinson (1980) and Plotnick (1981) and the close-equals approach of 

Aronson et al. (1994) and Lambert and Ramos (1997). In subsection 5.1 

links with the reranking approach are highlighted, and in subsection 5.2 

we explore the connections with the close-equals approach. This is the 

starting point for a more general and unified framework. 

 

 

                                                 
7 An alternative technical explanation of this fact is that Z is the most equitable 
distribution, in the Lorenz sense, to be obtained using the most favourable set of 
horizontal reducing transfers. Hence, Z can be seen as the theoretical HI-free 
distribution. 
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5.1. Relation between the non-parametric approach and the reranking 

based HI measures 

Reranking-based analysis measures the vertical income redistribution 

caused by the tax system using the distance between the after-tax income 

concentration curve (Ly,x) and the before-tax income Lorenz curve (Lx). Thus, 

HI is the distance between the after-tax income concentration curve (Ly,x) 

and the after-tax income Lorenz curve (Ly). 

However, we know from above that the overall redistribution effects can 

be decomposed under our approach into a vertical redistribution (distance 

from Lx to Lz) and a horizontal inequity component (distance from Lz to Ly). 

To this end, both methodologies are analogous (compare Figures 4 and 5). 

The after-tax concentration curve always lies above the after-tax Lorenz 

curve in the reranking approach. Similarly, the estimated post-tax income 

Lorenz curve dominates the post-tax income Lorenz curve in our approach.  

Both methods are based on the existence of a theoretical HI-free 

distribution from which the RE can be decomposed into the VR and HI 

components. In our case, this benchmark is the non-parametrically 

estimated Lz, and is the concentration curve Lx,y in the reranking approach. 

Nevertheless, the reranking approach may be criticized as there may 

be HI without reranking (see Aronson et al., 1994). 
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5.2. Close-equals approach as non-parametric modelling 

The main decompositions of RE within the close-equals approach can 

be found in the literature, as in Aronson et al. (1994) and Lambert and 

Ramos (1997). An interesting question arises: is the use of those 

approaches an implicit way of applying a non-parametric model? If so, what 

is the explicit underlying non-parametric model?  

To answer these questions, we start with the Lambert and Ramos 

(1997) 'pure' approach decomposition of the redistributive effect: 

 

HIVRRELR −=         (1) 

 

 )()( ,
00 YTXTVR SB−=        (2) 

∑ === )()( ,
01

,
0 YT

N
n

YTHI iWih
i

SW       (3) 

   

T0B,S and T0W,S denote the between- and the within-groups Theil-0 inequality 

indices, evaluated in the usual manner, under the given income brackets 

disjoint partition S consisting of h exhaustible subgroups. T0W,i denotes the 

within-i-subgroup Theil-0 inequality index, where ni is the population in 

the i-subgroup and N is the total population. We give an interpretation of 

this methodology in terms of the theoretical HI-free distribution given in the 
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previous subsection.  

According to the definitions in Section 4, the Lambert and Ramos 

(1997) decomposition is equivalent to a particular econometric model with 

both vertical redistribution terms equal to: 

 

)()()()( ,
00 YTXTZIXIVR SB−=−=       (4) 

 

When we consider the mean logarithmic deviation as the inequality 

index in our model, the estimated post-tax income inequality and the actual 

between-groups post-tax inequality are the same, which is guaranteed if the 

estimated post-tax income equals the mean post-tax income for each close-

equals group: 

 

)()(, ,
00 YTZTiZ SB

ii =⇒∀= µ       (5) 

 

where Zi is the estimated distribution in the subgroup i and iµ is the mean 

post-tax income in subgroups. The regressogram (Tukey, 1947) is indeed 

"an average of the response variables Y of which the corresponding Xs fall 

into disjoint bins spanning the X observation space" (Härdel, 1990, p. 67). It 

is, in fact, a kernel estimation (with uniform kernel) evaluated at the 

midpoints of the bins (Figure 6). Therefore, the Lambert and Ramos (1997) 
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decomposition of RE is equivalent to a particular non-parametric technique: 

the regressogram. 

The same result can be obtained analogously when the horizontal 

inequity term is considered: 

 

)()(
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    (6) 

 

This relationship can be extended to the decomposition of RE, 

proposed by Aronson et al. (1994):  

∑ −−−= RYG
N

n
YGXGRE iWiiSB

AJL )()()( ,,

µ
µ  

 

By using the Gini index (G), Aronson et al. (1994) represents the three 

terms decomposition of RE above into vertical, horizontal and reranking 

contributions. GB,S(Y) is the between-groups inequality of the post-tax 

income, GW,i(Y)  is the Gini index of the within-i-subgroup, and R is an 

index of reranking from the pre- to post-tax income distribution, which is 

closely related to that of Atkinson (1980) and Plotnick (1981).  

Similar conclusions can be obtained if we apply the above procedure to 

the Aronson et al. (1994) decomposition, using the Gini coefficient.  
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The decomposition provided by Tukey’s non-parametric smoothing 

achieves the same results as the 'pure' Lambert and Ramos approach (1997) 

and Aronson et al. (1994) decompositions of RE, depending on the 

inequality index applied. Therefore, both decompositions of RE are 

particular cases obtained by the regressogram.8  

So far we have assumed fixed-width intervals.9 Nevertheless, windows 

may well be variable, such as quantiles of the population. A statistically 

equivalent block regressogram can be constructed by averaging over k 

neighbours. This is, in fact, a k-Nearest Neighbours estimation analogue to 

the regressogram.10 The result is a new step function over a different 

window length. 

Two issues emerge when both methods of decomposition are 

considered as particular cases of the regressogram decomposition of RE. 

First, the application of a regressogram implies working with a bistochastic 

matrix of weights. 

 

 

 

                                                 
8 The Duclos and Lambert (2000) HI term can also be obtained as an application of 
Atkinson indices by endogenously generated intervals in the regressogram context.  
9 In Lambert and Ramos (1997), bandwidths were 100,000, 50,000 and 10,000 Pesetas per annum.  
10 The k-Nearest Neighbours (k-NN) estimate is a weighted average in a varying neighbourhood. When 
the independent variable is chosen from an equidistant grid, Kernel and k-NN have equivalent weights 
(Härdle, 1990).  
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Proposition 2:  

A regressogram estimation guarantees that the weights assigned to 

each observation of the dependent variable sum to one, not only across rows 

but also across columns; that is, the weights matrix is bistochastic. 

However, the reverse is obviously not true.  

Proof: Let S={s1(X), ..., sh(X)} be the partition under consideration, 

U={n1, ..., nh} the within-groups population set, and M={µ1,...,µh} the 

associate post-tax mean income set. Under the regressogram estimation, we 

find: 

 

i
i
n

i

i
zz µ=== ...1 ,  ∀ i = 1, ....., h     (7) 

In vector notation, Z=BY, where B is the following n-dimensional 

bistochastic matrix:  
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and Ni is the n i-dimensional square matrix:  
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As a consequence of Proposition 2, the estimated post-tax income 

distribution Lorenz dominates the post-tax income distribution. 

Second, the regressogram is one particular non-parametric method. 

Our method generalizes the current literature. First, we allow for the use of 

many non-parametric techniques and not only the regressogram, which is 

considered very simple. Indeed, the regressogram is, by definition, a 

discontinuous step function that might hide particular features of the 

distributions within the intervals. To this end, it is worth seeing the 

difference between the post-tax income estimated according to the 

regressogram, and the one obtained by the Nadaraya-Watson reformulated 

estimator, as shown in Figure 7. Even in the regressogram case, we find 

justification to use not only the Theil 0 index, but any ordinal S-convex 

index.  

 

6. Conclusions 

The central point of this paper is the construction of an ordinal 

decomposition of total redistribution effect into vertical redistribution and 

horizontal inequity, which tackles both the normative and statistical issues 
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of the problem. This is done by using non-parametric methods. The indices 

are based on a generalization of the concept of HI with a different treatment 

received by adult-equivalent individuals, but it does not have the usual 

limitation of the existing indices, which is the arbitrary definition of similar 

individuals. This problem is solved through non-parametric estimation of 

the post-tax income distribution. The sizes of the intervals depend on the 

optimal smoothing technique that optimizes the trade-off between the bias 

(short intervals) and variance (large intervals) of the estimation. Moreover, 

non-parametric estimation does not take for granted that the tax system 

adopts any specific functional form.  

In addition, the proposed measure has a normative implication that 

satisfies the horizontal transfer principle. HI is measured by any index 

consistent with the distance between the estimated and the actual post-tax 

income Lorenz curves. Because the weight matrix is bistochastic, we prove 

that the Lorenz curve for the theoretical (estimated) post-tax income (LZ), 

when the tax system does not cause any HI, dominates the Lorenz curve for 

the observed post-tax incomes (LY). This allows us to adopt an ordinal versus 

a cardinal approach, as is common in the literature.  

We can also additively decompose the total effect of the tax system on 

the original distribution of income into two different elements: the first is 

the welfare gain due to the income redistribution free of HI, and the second 
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is the unambiguous welfare loss due to the HI.  

Finally, we demonstrate that the Aronson et al. (1994) and the 'pure' 

approach of Lambert and Ramos (1997) are particular cases of our 

methodology. This corresponds to the case when the non-parametric 

estimation adopts the particular regressogram form over the given 

exogenous non-overlapping intervals. This suggests an appealing unifying 

and generalizing framework.  
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Appendix. Non-parametric estimation  

Not all non-parametric estimation methods solve the problem of the 

normative properties in the measurement of HI, as is mentioned in the text 

of the paper. Our analysis uses the reformulated bistochastic estimator, 

proposed by Rodríguez and Salas (2000), which guarantees that the weights 

matrix is bistochastic. The weights assigned to Yi sum to one, not only 

across rows but also across columns.  

Given any two-dimensional random sample, (X1, Y1), (X2, Y2), . . ., (Xn, 

Yn), the random variable X denotes the explanatory variable and Y is 

referred to as the response variable. Our interest is to estimate the 

regression function at the point x, 

 

 

by a normalized nonparametric estimator; and not only within the intervals, 

but also between them. We write the nonparametric estimator at point x as 

a weighted average of observations of Y as 

 

)|()( xXYExm ==
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The weights Wj can be any probabilistic weights11 that dampen the Yjs 

with the corresponding X j value far from x. 

 

However, thus far, the observation weights have only been normalized 

within the intervals. In our case, we also require the weights to be 

normalized across the intervals, to achieve the overall convex estimation. 

If we estimate the regression function at r distinct points, and the 

weights matrix is represented by W={Wij}1≤ i ≤r, 1≤ j ≤n, the nonparametric 

estimator M  is expressed in vector notation by M=W· Y.  

An iterative proportional fitting method is applied to the elements Wij, 

in particular the Deming-Stephan algorithm (Deming and Stephan, 1940), 

to achieve a normalized matrix of weights across rows and columns, that is a 

bistochastic one. The algorithm proceeds by row and column adjustments, 

such that at iteration t (for ∀ t∈ N), the new elements of the matrix of 

weights are 

 

If t is odd, 

                                                 
11A weight function Wn is said to be a probability weight function if it is normalized  
(Σj Wnj(x) = 1) and nonnegative. 
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If t is even, 

 

where  

 

for ∀ j=1, . . ., n; and ∀ t∈N   

 and 

 

for ∀ i=1, . . ., r; and ∀ t∈N. 

 

Thus the reformulated bistochastic estimator vector is  

     Z = WB· Y,  

where WB={ ijW }1≤ i ≤r, 1≤ j ≤n is the closest bistochastic matrix to W, according 

,
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to the Kullback-Liebler distance function. 
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     Figure 1 

 

 

 

 

 

 

     Figure 2 

 

 

 

 

 

 

     Figure 3 

 

 

 

 

     Figure 4 

 

0 . 5 1 1 . 5 2 2 . 5 3

x  10
6

0 . 5

1

1 . 5

2

2 . 5

3
x  10

6

p r e - t a x  i n c o m e

p
o

s
t-

ta
x

 i
n

c
o

m
e

0 . 5 1 1 . 5 2 2 . 5 3

x  10
6

0 . 5

1

1 . 5

2

2 . 5

3
x  10

6

p r e - t a x  i n c o m e

p
o

s
t-

ta
x

 i
n

c
o

m
e

0 0 . 5 1 1 . 5 2 2 . 5 3

x  10
6

0

0 . 5

1

1 . 5

2

2 . 5

3
x  10

6

p r e - t a x  i n c o m e

p
o

s
t-

ta
x

 i
n

c
o

m
e



 
 29

Figure 4 
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     Figure 6 
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