Complete classification of rational solutions of A(2n)-Painleve systems.

Impacto

Downloads

Downloads per month over past year

Gómez-Ullate Otaiza, David and Grandati, Yves and Milson, Robert (2021) Complete classification of rational solutions of A(2n)-Painleve systems. Advances in mathematics, 385 . ISSN 0001-8708

[thumbnail of gomez-ullate46preprint.pdf]
Preview
PDF
520kB

Official URL: http://dx.doi.org/10.1016/j.aim.2021.107770




Abstract

We provide a complete classification and an explicit representation of rational solutions to the fourth Painleve equation P-IV and its higher order generalizations known as the A(2n)-Painleve or Noumi-Yamada systems. The construction of solutions makes use of the theory of cyclic dressing chains of Schrodinger operators. Studying the local expansions of the solutions around their singularities we find that some coefficients in their Laurent expansion must vanish, which express precisely the conditions of trivial monodromy of the associated potentials. The characterization of trivial monodromy potentials with quadratic growth implies that all rational solutions can be expressed as Wronskian determinants of suitably chosen sequences of Hermite polynomials. The main classification result states that every rational solution to the A(2n)-Painleve system corresponds to a cycle of Maya diagrams, which can be indexed by an oddly coloured integer sequence. Finally, we establish the link with the standard approach to building rational solutions, based on applying Backlund transformations on seed solutions, by providing a representation for the symmetry group action on coloured sequences and Maya cycles. (C) 2021 Elsevier Inc. All rights reserved.


Item Type:Article
Additional Information:

© 2021 Academic Press Inc Elsevier Science.
The research of DGU has been supported in part by the Spanish MICINN under grants PGC2018-096504-B-C33 and RTI2018-100754-B-I00, the European Union under the 2014-2020 ERDF Operational Programme and the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (project FEDER-UCA18-108393). We would like to thank three anonymous referees for their valuable comments that helped to improve the final version of this manuscript.

Uncontrolled Keywords:4th Painleve equation; Universal characters; Special polynomials; Chains; IV; Hierarchy; PII; 2nd.
Subjects:Sciences > Physics > Physics-Mathematical models
Sciences > Physics > Mathematical physics
ID Code:67707
Deposited On:16 Sep 2021 18:09
Last Modified:17 Sep 2021 06:48

Origin of downloads

Repository Staff Only: item control page