¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Competition between allowed and first-forbidden beta decays of At-208 and expansion of the Po-208 level scheme



Downloads per month over past year

Fraile Prieto, Luis Mario and Vedia Fernández, María Victoria and otros, ... (2021) Competition between allowed and first-forbidden beta decays of At-208 and expansion of the Po-208 level scheme. Physical review C, 103 (5). ISSN 2469-9985

[thumbnail of FrailePrieto73libre+CC.pdf]
Creative Commons Attribution.


Official URL: https://doi.org/10.1103/PhysRevC.103.054327


The structure of Po-208 populated through the EC/beta(+) decay of At-208 is investigated using gamma-ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed. rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the beta-decay strength of At-208 is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass region provides an excellent testing ground for the competition between allowed and first-forbidden beta-decay calculations, important for the detailed understanding of the nucleosynthesis of heavy elements.

Item Type:Article
Additional Information:

Artículo firmado por 49 autores. The authors would like to thank the operators of the ISOLDE facility for providing the beam for this experiment. The research leading to these results received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 654002. Support from the European Union Seventh Framework through ENSAR Contract No. 262010, as well as the Science and Technology Facilities Council (U.K.) through Grants No. ST/P005314/1, No. ST/L005743/1, No. ST/J000051/1, No. ST/L005670/1, and No. ST/P004598/1, the German BMBF under Contract No. 05P18PKCIA and "Verbundprojekt 05P2018" as well as Spanish MINECO Grants No. FPA2015-65035P and No. FPA2017-87568-P, FWOVlaanderen (Belgium), GOA/2015/010 (BOF KU Leuven), the Excellence of Science Programme (EOS-FWO), the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), the Polish National Science Centre under Contracts No. UMO-2015/18/M/ST2/00523 and No. UMO-2019/33/N/ST2/03023, National Science Foundation (U.S.) Grant No. PHY1811855, and the Romanian IFA project CERN-RO/ISOLDE is acknowledged. P.H.R. acknowledges support from the U.K. Department for Business, Energy and Industrial Strategy via the National Measurement Office.

Uncontrolled Keywords:Nuclear-data sheets; States; Transition
Subjects:Sciences > Physics > Nuclear physics
ID Code:67806
Deposited On:20 Sep 2021 07:19
Last Modified:20 Sep 2021 09:04

Origin of downloads

Repository Staff Only: item control page