Impacto
Downloads
Downloads per month over past year
Vaquero, Daniel and Clericò, Vito and Salvador Sánchez, Juan and Díaz García, Elena and Domínguez-Adame Acosta, Francisco and Chico Gómez, Leonor and Meziani, Yahya M and Díez, Enrique and Quereda, Jorge (2021) Fast response photogating in monolayer MoS_2 phototransistors. Nanoscale . ISSN 2040-3364
Preview |
PDF
Creative Commons Attribution. 1MB |
Official URL: http://dx.doi.org/10.1039/d1nr03896f
Abstract
Two-dimensional transition metal dichalcogenide (TMD) phototransistors have been the object of intensive research during the last years due to their potential for photodetection. Photoresponse in these devices is typically caused by a combination of two physical mechanisms: the photoconductive effect (PCE) and photogating effect (PGE). In earlier literature for monolayer (1L) MoS_2 phototransistors, PGE is generally attributed to charge trapping by polar molecules adsorbed to the semiconductor channel, giving rise to a very slow photoresponse. Thus, the photoresponse of 1L-MoS_2 phototransistors at high-frequency light modulation is assigned to PCE alone. Here we investigate the photoresponse of a fully h-BN encapsulated monolayer (1L) MoS_2 phototransistor. In contrast with previous understanding, we identify a rapidly-responding PGE mechanism that becomes the dominant contribution to photoresponse under high-frequency light modulation. Using a Hornbeck-Haynes model for the photocarrier dynamics, we fit the illumination power dependence of this PGE and estimate the energy level of the involved traps. The resulting energies are compatible with shallow traps in MoS2 caused by the presence of sulfur vacancies.
Item Type: | Article |
---|---|
Additional Information: | ©2021 RSC |
Uncontrolled Keywords: | Mechanisms; Gain |
Subjects: | Sciences > Physics > Materials Sciences > Physics > Solid state physics |
ID Code: | 68082 |
Deposited On: | 11 Oct 2021 15:26 |
Last Modified: | 13 Oct 2021 07:22 |
Origin of downloads
Repository Staff Only: item control page