Arabic gum plus colistin coated moxifloxacin-loaded nano particles forthe treatment of bone infection caused by Escherichia coli



Downloads per month over past year

Aguilera Correa, John Jairo and Gisbert Garzarán, Miguel and Mediero Muñoz, Aránzazu and Carias Calix, R.A and Jiménez Jiménez, Carla and Esteban, Jaime and Vallet Regí, María (2021) Arabic gum plus colistin coated moxifloxacin-loaded nano particles forthe treatment of bone infection caused by Escherichia coli. Acta Biomaterialia . ISSN 1742-7061

[thumbnail of 1-s2.0-S1742706121006802-main.pdf]
Creative Commons Attribution Non-commercial No Derivatives.


Official URL:


Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead topatient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as a platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier.

Item Type:Article
Additional Information:

CRUE-CSIC (Acuerdos Transformativos 2021)

RESEARCH ID  S-2443-2016  (Miguel Gisbert Garzarán)
ORCID 0000-0001-9815-0354 (Miguel Gisbert Garzarán)
RESEARCHER ID M-3378-2014 (María Vallet Regí)
ORCID 0000-0002-6104-4889 (María Vallet Regí)

Uncontrolled Keywords:osteomyelitis, Escherichia coli, biofilm, nanoparticles, Arabic gum, colistin, moxifloxacin
Subjects:Sciences > Chemistry > Materials
ID Code:68231
Deposited On:15 Oct 2021 07:01
Last Modified:22 Feb 2022 08:10

Origin of downloads

Repository Staff Only: item control page