Publication:
Conectividad de sedimientos de la cuenca del río Leitzaran

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021-09
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
El río Leitzaran es el principal afluente del río Oria, que desemboca en el mar Cantábrico. Dentro de los ríos de Gipuzkoa se trata de un valle singular y que ha logrado mantener un grado de naturalidad alto. Para poder hacer un planeamiento territorial óptimo, así como mejorar la calidad geomorfológica y ecológica del río, conocer la conectividad de sedimentos de los sistemas fluviales es un requisito indispensable. Por ello se ha sometido a estudio la cuenca del río Leitzaran, donde se ha implementado el índice de conectividad de sedimentos desarrollado por Cavalli et al., (2013), mediante diferentes técnicas SIG. Por una parte, se ha relacionado la conectividad de sedimentos con la propia rugosidad de la topografía; por otra parte, con los cambios de usos de suelo entre los años 1956 y 2018, que han producido cambios significativos en la conectividad de la cuenca. Además, se han identificado las fuentes de sedimentos de la cuenca, ya que el conocimiento de áreas específicas que aportan sedimentos a la red de drenaje es necesario para el estudio del transporte de sedimentos. Los resultados sugieren que la conectividad general de la cuenca ha mejorado a lo largo de los años y apuntan a que las fuertes pendientes de la cuenca condicionan completamente el índice de conectividad, dejando los usos de suelo en un segundo plano.
The Leitzaran River is the main tributary of the Oria River, which empties into the Cantabrian Sea. Within the rivers of Gipuzkoa it is a unique valley that has managed to maintain a high degree of naturalness. To be able to do an optimal territorial planning, as well as to improve the geomorphological and ecological quality of the river, knowing the sediment connectivity of the river systems is an indispensable requirement. For this reason, the Leitzaran river basin has been studied, where the sediment connectivity index developed by Cavalli et al. (2013), through different GIS techniques, has been implemented. On the one hand, sediment connectivity has been related to the roughness of the topography itself; on the other hand, with the changes in land use between 1956 and 2018, which have produced significant changes in the connectivity of the basin. In addition, the sources of sediments in the basin have been identified, since the knowledge of specific areas that contribute sediments to the drainage network is necessary for the study of sediment transport. The results suggest that the general connectivity of the basin has improved over the years and suggest that the steep slopes of the basin completely condition the connectivity index, leaving land uses in the background.
Description
Keywords
Citation
Amoros, C. y Roux, A. L. (1988). Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. Münstersche Geographische Arbeiten, 29(1), 125-130 Bochet, E., Rubio, J. L. y Poesen, J. (1999). Modified topsoil islands within patchy Mediterranean vegetation in SE Spain. Catena, 38(1), 23-44. Borselli, L., Cassi, P., y Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75(3), 268-277. Brazier, R., Vericat, D., Cerda, A., Brardinoni, F., Batalla, R., Masselink, R. y Keesstra, S. (2015). Can we measure connectivity?. EGU General Assembly Conference Abstracts,15814. https://meetingorganizer.copernicus.org/EGU2015/EGU2015-15814.pdf Brierley, G., Fryirs, K. y Jain, V. (2006). Landscape connectivity: the geographic basis of geomorphic applications. Area, 38(2), 165-174. Cammeraat, L. H. (2002). A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms, 27(11), 1201–1222 Cammeraat, E. L. (2004). Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture, Ecosystems & Eenvironment, 104(2), 317-332 Cantreul, V., Bielders, C., Calsamiglia, A. y Degré, A. (2018). How pixel size affects a sediment connectivity index in central Belgium. Earth Surface Processes and Landforms, 43(4), 884-893. Castro, I. M. (1989). “Leizaran: Un valle singular”. En: Ibaiak eta Haranak. El agua, el río y los espacios agrícola, industrial y urbano. San Sebastián: Etor. vol. I, 145-158. Cavalli, M., Trevisani, S., Comiti, F. y Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. Crema, S. y Cavalli, M. (2018). SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity. Computers & Geosciences, 111, 39-45 Croke, J., Mockler, S., Fogarty, P. y Takken, I. (2005). Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68(3-4), 257-268. De Vente, J. y Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-science reviews, 71(1-2), 95-125. Dietrich, W. E. y Dunne, T. (1978). Sediment budget for a small catchment in mountainous terrain. Zeitschrift für Geomorphologie Suplement, 29, 191-206. 43 Faci, E. (dir.). (2002) Cartografía Geológica de Navarra a escala 1:25.000.89-II. Berástegui. Memoria. Tecnología de la Naturaleza, Gobierno de Navarra. Fryirs, K. A., Brierley, G. J., Preston, N. J. y Kasai, M. (2007). Buffers, barriers and blankets: the (dis) connectivity of catchment-scale sediment cascades. Catena, 70(1), 49-67. Horacio García, J., Ibisate, A., Sánchez-Pinto, I., Vázquez-Tarrío, D., Ollero, A., Herrero, X., Ortiz Martinez de Lahidalga, J. y Beltrán de Lubiano, J. (2021). Sediment displacement evolution after dam removal in a mountain river (Oioki dam, Leitzaran River). EGU General Assembly Conference Abstracts, doi 10.5194/egusphere-egu21-8444. (EGU21-8444). Ibisate, A., Ollero, A., Ballarín, D., Horacio, J., Mora, D., Mesanza, A., Ferrer-Boix, C., Acín, V., Granado, D., y MartínVide, J. P. (2016). Geomorphic monitoring and response to two dam removals: rivers Urumea and Leitzaran (Basque Country, Spain). Earth Surface Processes and Landforms, 41(15), 2239-2255. Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56(1-2), 79-94. INE. (2021). Cifras oficiales de población de los municipios españoles: Revisión del Padrón Municipal 2020. Instituto Nacional de Estadística Janssen, C. (2016). Manning’s n Values for various land covers to use for dam breach analyses by NRCS in Kansas. Revised by PAC Khanbilvardi, R. M. & Rogowski, A. S. (1984). Quantitative evaluation of sediment delivery ratios 1. JAWRA Journal of the American Water Resources Association, 20(6), 865-874. Llena, M., Vericat, D., Cavalli, M., Crema, S., y Smith, M. W. (2019). The effects of land use and topographic changes on sediment connectivity in mountain catchments. Science of the Total Environment, 660, 899-912. Pejenaute, J. (2002). Navarra-Geografía. Departamento de Educación y Cultura, Gobierno de Navarra, Pamplona, 43-80 pp. Puigdefábregas, J., Sole, A., Gutierrez, L., Del Barrio, G. y Boer, M. (1999). Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Science Reviews, 48(1-2), 39-70. Roehl J. W. (1962). Sediment source areas, delivery ratios and influencing morphological factors. International Association of Scientific Hydrology Publication, 59, 202–13 Turnbull, L., Hütt, M. T., Ioannides, A. A., Kininmonth, S., Poeppl, R., Tockner, K., Bracken, J.L., Keesstra, S., Liu, L., Masselink, R., y Parsons, A. J. (2018). Connectivity and complex systems: learning from a multi-disciplinary perspective. Applied Network Science, 3(1), 1-49. Wohl, E. (2017). Connectivity in rivers. Progress in Physical Geography, 41(3), 345-362 44 Wolman, M. G. & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54-74.