Publication:
Ethanol gas sensing mechanisms of p-type NiO at room temperature

Research Projects
Organizational Units
Journal Issue
Abstract
Conductometric gas sensors based on metal oxide semiconductors (MOS) usually require high temperature operation, increasing their energy consumption and limiting their applicability. However, room temperature operation with these devices still remains a challenge in many sensor-analyte systems due in part to the low or null response and recovery speeds obtained at this temperature. In this work, the conductometric response of ptype NiO ceramic samples to ethanol is studied under room temperature operation. An anomalous response consisting in an unexpected resistance decrease upon ethanol exposure is observed depending on sample texturing, which is tuned by changing the temperature at which the samples are synthesized. This anomalous response is characterized by fast response and recovery times. A model based on two competing mechanisms, consisting in either an electron transfer from NiO to the ethanol molecule or the catalytic decomposition of adsorbed ethanol, is proposed to explain the observed anomalous response. Extending this model to other MOS could pave the way for fast sensors operating at room temperature.
Description
CRUE-CSIC (Acuerdos Transformativos 2021) © 2021 The Authors. This work was supported by the V-PRICIT of Comunidad de Madrid through the research project PR65/19-22335 and by the RTI2018-097195-B-I00 project supported by MCI/AEI/FEDER, UE. Authors thank the ESCA-microscopy staff at the Elettra Synchrotron for their help during XPS and additional sensitivity measurements. J.B. acknowledges financial support from the Comunidad de Madrid through the Talento fellowship 2017-T2/IND-5617.
Keywords
Citation
[1] P.T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: A review, Meas. Sci. Technol. 28 (8) (2017) 082001, https://doi.org/10.1088/1361-6501/aa7443. [2] G.W. Hunter, S. Akbar, S. Bhansali, M. Daniele, P.D. Erb, K. Johnson, C.-C. Liu, D. Miller, O. Oralkan, P.J. Hesketh, P. Manickam, R.L. Vander Wal, Editors’ Choice—Critical Review—A Critical Review of Solid State Gas Sensors, J. Electrochem. Soc. 167 (2020) 037570, https://doi.org/10.1149/1945-7111/ab729c. [3] G. Korotcenkov, V. Brinzari, B.K. Cho, In2O3- and SnO2-Based Thin Film Ozone Sensors: Fundamentals, J. Sensors. 2016 (2016) 1–31, https://doi.org/10.1155/2016/3816094. [4] C.Y. Wang, V. Cimalla, T. Kups, C.C. R¨ohlig, T. Stauden, O. Ambacher, M. Kunzer, T. Passow, W. Schirmacher, W. Pletschen, K. K¨ohler, J. Wagner, Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes, Appl. Phys. Lett. 91 (2007) 103509, https://doi.org/10.1063/1.2779971. [5] C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Metal oxide nanocrystals for gas sensing, Sensors Actuators, B Chem. 109 (1) (2005) 2–6, https://doi.org/10.1016/j.snb.2005.03.091. [6] N.S. Ramgir, Y. Yang, M. Zacharias, Nanowire-based sensors, Small. 6 (16) (2010) 1705–1722, https://doi.org/10.1002/smll.201000972. [7] J.-E. Haugen, O. Tomic, K. Kvaal, A calibration method for handling the temporal drift of solid state gas-sensors, Anal. Chim. Acta. 407 (1-2) (2000) 23–39, https:// doi.org/10.1016/S0003-2670(99)00784-9. [8] J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured Materials for Room-Temperature Gas Sensors, Adv. Mater. 28 (5) (2016) 795–831, https://doi.org/10.1002/adma.v28.510.1002/adma.201503825. [9] D. Zhang, C. Li, X. Liu, S. Han, T. Tang, C. Zhou, Doping dependent NH3 sensing of indium oxide nanowires, Appl. Phys. Lett. 83 (9) (2003) 1845–1847, https://doi. org/10.1063/1.1604194. [10] C.Y. Wang, V. Cimalla, T. Kups, C.C. R¨ohlig, H. Romanus, V. Lebedev, J. Pezoldt, T. Stauden, O. Ambacher, Photoreduction and oxidation behavior of In2O3 nanoparticles by metal organic chemical vapor deposition, 044310-044310–6, J. Appl. Phys. 102 (2007), https://doi.org/10.1063/1.2770831. [11] A. Gurlo, N. Bˆarsan, A. Oprea, M. Sahm, T. Sahm, U. Weimar, An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3, Appl. Phys. Lett. 85 (12) (2004) 2280–2282, https://doi.org/10.1063/1.1794853. [12] C. Zhao, J. Fu, Z. Zhang, E. Xie, Enhanced ethanol sensing performance of porous ultrathin NiO nanosheets with neck-connected networks, RSC Adv. 3 (2013) 4018–4023, https://doi.org/10.1039/c3ra23182h. [13] S. Sänze, C. Hess, Ethanol gas sensing by indium oxide: An operando spectroscopic Raman-FTIR study, J. Phys. Chem. C. 118 (44) (2014) 25603–25613, https://doi.org/10.1021/jp509068s. [14] Z. Dai, C.-S. Lee, Y. Tian, I.-D. Kim, J.-H. Lee, Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P-N transition phase diagram, J. Mater. Chem. A. 3 (7) (2015) 3372–3381, https://doi.org/10.1039/C4TA05438E. [15] S. Roso, D. Degler, E. Llobet, N. Barsan, A. Urakawa, Temperature-Dependent NO2 Sensing Mechanisms over Indium Oxide, ACS Sensors. 2 (9) (2017) 1272–1277, https://doi.org/10.1021/acssensors.7b0050410.1021/acssensors.7b00504.s001. [16] G. Korotcenkov, V. Brinzari, V. Golovanov, A. Cerneavschi, V. Matolin, A. Tadd, Acceptor-like behavior of reducing gases on the surface of n-type In2O3, Appl. Surf. Sci. 227 (1–4) (2004) 122–131, https://doi.org/10.1016/j.apsusc.2003.11.051. [17] E. Comini, Metal oxide nano-crystals for gas sensing, Anal. Chim. Acta. 568 (1-2) (2006) 28–40, https://doi.org/10.1016/j.aca.2005.10.069. [18] A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229 (2018) 206–217, https://doi.org/10.1016/j.mseb.2017.12.036. [19] H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors Actuators, B Chem. 192 (2014) 607–627, https://doi.org/10.1016/j.snb.2013.11.005. [20] T.P. Mokoena, H.C. Swart, D.E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives, J. Alloys Compd. 805 (2019) 267–294, https://doi.org/10.1016/j.jallcom.2019.06.329. [21] J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B.o. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping, Nanotechnology. 29 (24) (2018) 245501, https://doi.org/10.1088/1361-6528/aab9d8. [22] M. Tae˜no, D. Maestre, A. Cremades, Fabrication and study of self-assembled NiO surface networks assisted by Sn doping, J. Alloys Compd. 827 (2020) 154172, https://doi.org/10.1016/j.jallcom.2020.154172. [23] H.-J. Kim, H.-M. Jeong, T.-H. Kim, J.-H. Chung, Y.C. Kang, J.-H. Lee, Enhanced ethanol sensing characteristics of In2O3-decorated NiO hollow nanostructures via modulation of hole accumulation layers, ACS Appl. Mater. Interfaces. 6 (20) (2014) 18197–18204, https://doi.org/10.1021/am5051923. [24] L. Liu, S. Li, L. Wang, C. Guo, Q. Dong, W. Li, Enhancement ethanol sensing properties of NiO-SnO2 nanofibers, J. Am. Ceram. Soc. 94 (2011) 771–775, https:// doi.org/10.1111/j.1551-2916.2010.04137.x. [25] G. Niu, C. Zhao, H. Gong, Z. Yang, X. Leng, F. Wang, NiO nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance, Microsystems Nanoeng. 5 (2019) 21, https://doi.org/10.1038/s41378-019-0060-7. [26] D. Li, Y. Zhang, D. Liu, S. Yao, F. Liu, B. Wang, P. Sun, Y. Gao, X. Chuai, G. Lu, Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance, CrystEngComm. 18 (41) (2016) 8101–8107, https://doi.org/10.1039/C6CE01621A. [27] M. Tae˜no, J. Bartolomé, L. Gregoratti, P. Modrzynski, D. Maestre, A. Cremades, Self-Organized NiO Microcavity Arrays Fabricated by Thermal Treatments, Cryst. Growth Des. 20 (6) (2020) 4082–4091, https://doi.org/10.1021/acs. cgd.0c0036510.1021/acs.cgd.0c00365.s001. [28] R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Quantum-mechanical condensed matter simulations with CRYSTAL, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (4) (2018), https://doi.org/10.1002/wcms.2018.8.issue-410.1002/wcms.1360. [29] S.K. Ganapathi, M. Kaur, R. Singh, V.I. Singh, A.K. Debnath, K.P. Muthe, S. C. Gadkari, Anomalous Sensing Response of NiO Nanoparticulate Films toward H2S, ACS Appl. Nano Mater. 2 (10) (2019) 6726–6737, https://doi.org/10.1021/acsanm.9b0163710.1021/acsanm.9b01637.s001. [30] C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, Design of Superior Ethanol Gas Sensor Based on Al-Doped NiO Nanorod-Flowers, ACS Sensors. 1 (2) (2016) 131–136, https://doi.org/10.1021/acssensors.5b0012310.1021/acssensors.5b00123.s001. [31] M. Carbone, P. Tagliatesta, NiO grained-flowers and nanoparticles for ethanol sensing, Materials (Basel). 13 (2020) 1880, https://doi.org/10.3390/MA13081880. [32] Shailja, K.J. Singh, R.C. Singh, Singh, Highly sensitive and selective ethanol gas sensor based on Ga-doped NiO nanoparticles, J. Mater. Sci. Mater. Electron. 32 (8) (2021) 11274–11290, https://doi.org/10.1007/s10854-021-05796-8. [33] S. Zhao, Y. Shen, Y. Xia, A. Pan, Z. Li, C. Carraro, R. Maboudian, Synthesis and gas sensing properties of NiO/ZnO heterostructured nanowires, J. Alloys Compd. 877 (2021) 160189, https://doi.org/10.1016/j.jallcom.2021.160189. [34] C. Nie, W. Zeng, Y. Li, The 3D crystal morphologies of NiO gas sensor and constantly improved sensing properties to ethanol, J. Mater. Sci. Mater. Electron. 30 (2) (2019) 1794–1802, https://doi.org/10.1007/s10854-018-0451-9. [35] V. Kruefu, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, S. Phanichphant, Enhancement of p-type gas-sensing performances of NiO nanoparticles prepared by precipitation with RuO2 impregnation, Sensors Actuators B Chem. 236 (2016) 466–473, https://doi.org/10.1016/J.SNB.2016.06.028. [36] J. Liang, Q. Lou, W. Wu, K. Wang, C. Xuan, NO2 Gas Sensing Performance of a VO2(B) Ultrathin Vertical Nanosheet Array: Experimental and DFT Investigation, ACS Appl. Mater. Interfaces. 13 (27) (2021) 31968–31977, https://doi.org/ 10.1021/acsami.1c0525110.1021/acsami.1c05251.s001. [37] C. Xu, D.W. Goodman, Structure sensitivity of oxide surfaces: The adsorption and reaction of carbon monoxide and formic acid on NiO(100) and NiO(111), Catal. Today. 28 (4) (1996) 297–303, https://doi.org/10.1016/S0920-5861(96)00044-2. [38] A. Wander, I.J. Bush, N.M. Harrison, Stability of rocksalt polar surfaces: An ab initio study of MgO(111) and NiO(111), Phys. Rev. B - Condens. Matter Mater. Phys. 68 (2003), 233405, https://doi.org/10.1103/PhysRevB.68.233405. [39] V. Orazi, A. Juan, E.A. Gonz´alez, J.M. Marchetti, P.V. Jasen, DFT study of ethanol adsorption on CaO(001) surface, Appl. Surf. Sci. 500 (2020) 144254, https://doi.org/10.1016/j.apsusc.2019.144254.
Collections