Modeling the impact of SARS-CoV-2 variants and vaccines on the spread of COVID-19

Impacto

Downloads

Downloads per month over past year

Ramos del Olmo, Ángel Manuel and Vela Pérez, María and Ferrández, M.R. and Kubik, Alicja Barbara and Ivorra, Benjamin (2021) Modeling the impact of SARS-CoV-2 variants and vaccines on the spread of COVID-19. Communications in Nonlinear Science and Numerical Simulation, 102 . p. 105937. ISSN 1007-5704

[thumbnail of 1-s2.0-S1007570421002495-main.pdf]
Preview
PDF
Creative Commons Attribution.

2MB

Official URL: https://doi.org/10.1016/j.cnsns.2021.105937



Abstract

The continuous mutation of SARS-CoV-2 opens the possibility of the appearance of new variants of the virus with important differences in its spreading characteristics, mortality rates, etc. On 14 December 2020, the United Kingdom reported a potentially more contagious coronavirus variant, present in that country, which is referred to as VOC 202012/01. On 18 December 2020, the South African government also announced the emergence of a new variant in a scenario similar to that of the UK, which is referred to as variant 501.V2.

Another important milestone regarding this pandemic was the beginning, in December 2020, of vaccination campaigns in several countries. There are several vaccines, with different characteristics, developed by various laboratories and research centers.

A natural question arises: what could be the impact of these variants and vaccines on the spread of COVID-19?

Many models have been proposed to simulate the spread of COVID-19 but, to the best of our knowledge, none of them incorporates the effects of potential SARS-CoV-2 variants together with the vaccines in the spread of COVID-19. We develop here a -SVEIHQRD mathematical model able to simulate the possible impact of this type of variants and of the vaccines, together with the main mechanisms influencing the disease spread. The model may be of interest for policy makers, as a tool to evaluate different possible future scenarios.

We apply the model to the particular case of Italy (as an example of study case), showing different outcomes. We observe that the vaccines may reduce the infections, but they might not be enough for avoiding a new wave, with the current expected vaccination rates in that country, if the control measures are relaxed. Furthermore, a more contagious variant could increase significantly the cases, becoming the most common way of infection. We show how, even with the pandemic cases slowing down (with an effective reproduction number less than 1) and the disease seeming to be under control, the effective reproduction number of just the new variant may be greater than 1 and, eventually, the number of infections would increase towards a new disease wave. Therefore, a rigorous follow-up of the evolution of the number of infections with any potentially more dangerous new variant is of paramount importance at any stage of the pandemic.


Item Type:Article
Additional Information:

CRUE-CSIC (Acuerdos Transformativos 2021)

Palabras clave (otros idiomas):θ-SIR Type model; COVID-19 vaccines, SARS-CoV-2 variants; VOC 202012/01, 501.V2, effective reproduction number
Subjects:Sciences > Mathematics > Applied statistics
Sciences > Mathematics > Mathematical statistics
ID Code:70062
Deposited On:04 Feb 2022 14:59
Last Modified:18 Oct 2022 09:05

Origin of downloads

Repository Staff Only: item control page