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A B S T R A C T

We theoretically investigate the influence of a phonon bath on entangled generation between two semiconduc-
tor quantum dots coupled to a plasmonic nanocavity and coherently driven by an external optical field. Our
study reveals that phonons could be useful in a certain range of system parameters where a subradian state
preparation is possible. We point out that this behavior is due to the fact that phonon environment modify
the radiative properties of the two-qubit inducing different decay rates between the collective states of the
system. The influence of the factors characteristic of quantum dot systems and plasmonic nanocavity such as
energy mismatch in different dots, different plasmonic cavity losses as well as coupling to phonons is analyzed.
The entanglement can be controlled via different external parameters such as the cavity detuning, the Rabi
frequency of the driving field and the resonance frequency of the QDs.
. Introduction

Quantum information processing is an active research field in which
uantum entanglement of superposition states is the key to perform the
rimordial quantum operations [1–3]. Different systems have been pro-
osed for entanglement such as photons [4,5], atoms and molecules [6]
nd solid state systems as cold ions [7–9], quantum dots (QDs) inter-
cting with microcavities [10–14], and superconducting circuits [15,
6]. However, interaction of quantum systems with the environment
ay result in decoherence, thereby degrading the entanglement [17,
8]. Cavity quantum electrodynamics(cavity QED) has been used to
anipulate and protect the entanglement of qubits from their environ-
ent [19,20], and prolong entangled time [21–24]. In this context, the

ntegration of semiconductor QDs with (MNP) provides useful means to
ouple light and matter enabling strong confinement of light and thus
ncreasing the light–matter interaction [25]. Thus, hybrid-plasmonic
anostructures, i.e. structures where excitons in QDs are coupled to
ocalized surface plasmon (LSP) of a metal nanoparticle (MNP) at opti-
al frequencies can be exploited as nanoscale cavities. Several studies
ave shown the modification of spontaneous emission [26] and reso-
ance fluorescence of quantum emitters when placed near plasmonic
anostructures [27,28]. In particular, in recent years, the entanglement
ynamics of qubits near plasmonic nanostructures have been investi-
ated [29–31] proving that these dissipative plasmonic nanostructures
an produce entanglement between QDs in a analogous way to previous
roposals to entangle interacting atoms through common coupling to
lossy cavity [32]. Moreover longer entanglement distances can be

chieved by utilizing one-dimensional wedge waveguides [33–35], and
anorings [36].

E-mail address: antonm@ucm.es.

Despite their potential for displaying quantum plasmonics effects,
previous predictions of plasmon-induced entanglement in QDs-MNP
nanostructures have been limited to systems in which the contribution
of electron–phonon is ignored. However, it has been pointed out that
the decoherence effects induced by the solid state environment of
QD excitons are dominated by interactions with longitudinal acoustic
phonons via the deformation potential coupling [37]. For example,
exciton–phonon interactions are known to have a significant effect on
the neutral exciton photoluminescence [38,39] and in self-assembled
quantum dots coupled to nanocavities [13,40–42]. For these reasons,
phonon effects in hybrid plasmonic deserve to be considered.

It is interesting to note that although the interaction with phonon
environment is usually considered as a source of decoherence, coupling
with a dissipative environment can also generate entanglement [43–
47]. In this sense, the study of the effect of phonons on the dynamics
of a quantum dot has been the subject of considerable interest. Ex-
amples include the study of entanglement between two QDs [48,49],
entanglement between two charge qubits induced by a common dissi-
pative environment [50], and entanglement of a laser driven pair of
two closely two-level qubits interacting via dipole–dipole [51], among
others. Recently, phonons have been actively used in optical control
schemes of QD states to prepare the exciton or biexciton state of the
QD [52,53].

In view of this, the aim of this paper is to investigate the role of
phonon-assisted transitions on entanglement between two QDs coupled
to a plasmonic nanostructure. The main idea is to use phonon coupling
as a low frequency reservoir which can change the radiative properties
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Fig. 1. Two QDs coupled to a MNP. The transition frequencies of the QDs are !01, !02, respectively. The MNP support longitudinal plasmons of frequency !sp. The QDs are
coupled to independent phonon baths with exciton–phonon coupling constants �qj . Each QD decay to the vacuum with decay rate j , and � is the decay rate of the MNP. The
hybrid system is driven by a external field of frequency !L.
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of the quantum dots [12,54] and drive the qubits into a subradiant
state. In particular, we will develop a theoretical model by coupling
the qubits with the external field and the plasmonic cavity modes and
including the interaction of each QD with two independent phonon
baths. It is found that in certain conditions, the phonon environments
can enhance the entanglement.

The paper is organized as follows: Section 2 establishes a model to
describe the two-QDs interacting with a metallic nanoparticle taking
into account the interaction between the QDs and the bosonic baths,
and we derive an effective Hamiltonian which allows us to obtain
the dynamical equations of the matrix density elements of the atomic
system. In Section 3, we analyze the effect of the phonon interaction on
entanglement of the two QDs. Finally, Section 4 summarizes the main
conclusions.

2. Theoretical model

The system under study, displayed in Fig. 1, consists in two QDs
placed in close proximity to a metal particle (MNP) of radius a on the
nanometer scale. Each QD is modeled as a two-level system with ground
state ðgº, and upper state ðeº. The transition frequency for each QD is
!0j = !ej * !gj , .j = 1; 2/, and the transition electric dipole moment is
��ge. The distances between the QDs and the center of the MNP are R1
and R2, respectively. The system is driven by an external laser field of
frequency !L and a slowly varying amplitude EL, given by

�EL.t/ =
1
2
EL

�

e*i!Lt + ei!Lt
�

; (1)

This oscillating electric field will generate plasmon oscillations in
he MNP, and electric dipoles in the QD, which interact with each
ther via the dipole–dipole interaction (DDI). The optical response of
he MNP can be described by its dielectric function �m.!/ that we take
n a renormalized Drude approximation [55],

m.!/ = �Ø *
!2p

!2 + ip!
; (2)

where �Ø is the high-frequency limit of the metal dielectric function, !p
is the bulk plasmon frequency, and p is the Landau damping constant.
The resonance frequency of the MNP !sp can be tuned by tailoring the
radius of the MNP, which allows us to match the plasmonic resonance
to a specific transition frequency of the QDs. The dielectric function of
each QD is denoted as �s, while that of the host medium is denoted as
�B . Furthermore, we assume that the two QDs are coupled with two
independent phonon reservoirs PH1 and PH2 at temperatures T1 and

2, respectively, as sketched in Fig. 1.
2

The two-level excitonic term of the Hamiltonian of the ith QD can
be expressed as

H0 =
‘
2

2
É

j=1
!0j�

.j/
z (3)

where ‘!0j is the excitonic energy of the QD and �j,, �jz are the Pauli
matrices acting in the space spanned by the states ðgº and ðeº. Each QD
nteracts with its local phononic reservoir which are described as a set
f harmonic oscillators with frequency !qj (j=1,2), respectively. The

QD interaction–boson bath interaction is described with a spin-phonon
Hamiltonian [45,56] given by

HPh = ‘
É

qj

!qj b
+
qj
bqj+‘

É

q1
�q1�

.1/
z

�

b+q1 + bq1
�

+‘
É

q2
�q2�

.2/
z

�

b+q2 + bq2
�

:

(4)

here b+qj .bqj / is the creation(annihilation) phonon operator and �qj
j = 1; 2/ is the coupling constant of the atomic-phonon bath interac-
ion.

The interaction between the two QDs via electric dipole–dipole is
iven by

D*D = ‘JD
�

�.1/+ �.2/* + �.2/+ �.1/*
�

; (5)

here JD is the coupling constants which is assumed to be given
y JD = 3

4 
�

�

1 * 3 cos2 �
� cos.kR/

.kR/3

�

, where � is the angle between the
transition dipole vector ��ge and the vector connecting the two qubits,
i.e., �R, and j is the single-qubit spontaneous decay rate.

The QDs excitons interact with a single plasmonic cavity mode of
frequency !sp:

Hpc = ‘!spa+a ; (6)

where a (a+) is the annihilation(creation) operator for elementary
plasmonic excitations with angular frequency !sp which satisfy bosonic
commutation relations. The QDs interact with the plasmonic cavity
mode via the coupling Hamiltonian

He*p = ‘!spa+a + ‘
2
É

j=1
gj

�

a+�j + a�+j
�

; (7)

with coupling constants gj ; .j = 1; 2/ which are given by [57]

gj =
�.j/eg
R3j

v

3�a3
4��0

; (8)

where � = 1_ d Re[� .!/] .
d! m !=!sp
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Finally, the interaction between the external laser field and the QDs
s given by

ext = ‘
2
É

j=1

j

�

�j+e
*i!Lt + �j*e

i!Lt
�

; (9)

here 
j =
ó

ó

ó

�jge
ó

ó

ó

EL
2‘ is the Rabi frequency of the optical field.

After performing a transformation to a frame rotating with the
riving field frequency !L, the total Hamiltonian describing this system

can be expressed as

H = ‘
2

2
É

j=1
�Lj�

.j/
z + ‘JD

�

�.1/+ �.2/* + �.2/+ �.1/*
�

+ ‘
2
É

j=1

j

�

�j+ + �
j
*

�

+‘�ca+a + ‘
2
É

j=1
gj

�

a+�j + a�+j
�

+HPh ; (10)

where �Lj = .!0j * !L/ .j = 1; 2/ and �c = .!L * !sp/ are the detuning
of the optical field with the transition frequency of each atom, and the
frequency of the plasmonic cavity, respectively.

We describe the dynamics of the system by means of the mas-
ter equation for the density matrix, �, including the effects of the
environment via the phenomenological Lindblad terms [58]
)�
)t
= * i

‘
[H; �] + LQD� + Lc� ; (11)

where LQD accounts for dipole decay of the QD excitons, and Lc rep-
resents plasmonic cavity decay. These Liouvillian operators are defined
as follows:

LQD� = *1
2

2
É

i;j=1
ij

�

�.j/+ �
.i/
* � * 2�

.i/
* ��

.j/
+ + ��.j/+ �

.i/
*

�

;

Lc� = *�
2
�

a+a� * 2a�a+ + �a+a
�

; (12)

where ij .i = j/ are the spontaneous emission rates of the quan-
tum dots, whereas ij .i � j/ describe the collective damping, and �
represents the plasmonic cavity decay rate which is given by � =
2�Im[�m.!/]!=!sp [57].

Now, we are interested in deriving an effective Hamiltonian for the
atomic system by eliminating the field operators of the cavity mode
in Eq. (10). This can be accomplished safety if the coupling constants
and the decay rates are such that � ‚ gj ‚ j . This condition is
fully satisfied in the considered hybrid plasmonic system, since the
dissipation rates in QDs are of the order on 0.1–1 GHz which are several
orders of magnitude smaller than those associated with plasmonic
nanoantennas (in the range of 100 THz) [59]. In order to eliminate
the plasmonic cavity mode we apply an unitary transformation U1 =
exp

�

�D
�

, where

�D =
2
É

j=1

�

�j�
.j/
+ a * �

<
j a
+�.j/*

�

; (13)

�j being

�j = *i
gj

�_2 + i�c
: (14)

Using the Baker-Campbell- Hausdorff formula, the Hamiltonian H
iven in Eq. (10) transforms according to

.1/ = e*�
£
DHe�D =

Ø
É

n=0

�nD
n@

�

�D;H
�

n (15)

here [A;B]n+1 =
�

A; [A;B]n
�

. Since in our system � ‚ gj , then from
q. (14) is evident that ð�j ð ~ 1. This allows to conveniently truncate
he transform at the third and higher terms of �D. Taking into account
he bath correlations

a£.!¤/a.!/º = 0;

a.!¤/a£.!/º = �.!¤ * !/ ; (16)
3

nd tracing over the photon bath operators, we derive the master
quation for the QDs:

)�.1/

)t
= * i

‘
�

H .1/; �.1/
�

+ L.1/QD�
.1/ + L.1/c �

.1/ ; (17)

where the effective Hamiltonian reads

H .1/ = ‘
2
�

.�0 + �L/�jz
�

* ‘
2
É

j=1

j

�

�j* + �
j
+

�

+‘Jeff
�

�.1/+ �.2/* + �.2/+ �.1/*
�

+HPh ; (18)

ith

0 = !1 * !2;

L = !2 * !L *
g2j �c

�2_4 + �2c
;

eff = JD +
g1g2�c

�2_4 + �2c
: (19)

As follows from Eq. (19), the interaction with the plasmonic cavity
modes shifts the transition frequency of the QDs, and modifies the
dipole–dipole interaction JD between the two qubits and, which is
necessary for the generation of entanglement in this system. It is worth
noting that the condition �L = 0 corresponds to quasi-resonance of the
driving field with the second QD, and �0 = 0 means that the two QDs
have the same transition frequency.

In addition, the unitary transformation U .1/ induces new decay
erms �Mj , and �Mij that enhance the decay rate of the QDs, namely,
.1/
T �

.1/ � L.1/QD�
.1/ + L.1/c �

.1/

=
.j + �Mj /

2
É

j

�

�.j/+ �
.j/
* �

.1/ * 2�.j/* �
.1/�.j/+ + �.1/�.j/+ �

.j/
*

�

*
�Mij
2

É

i�j

�

�.j/+ �
.i/
* �

.1/ * 2�.i/* �
.1/�.j/+ + �.1/�.j/+ �

.i/
*

�

; (20)

with

�Mj =
�j ð�j ð

2

2
=
�j
2

g2i
�2_4 + �2c

;

�Mij = ij +
�j�i�<j
2

:

Before removing the phonon bath modes, it is very convenient
to switch from the current basis given by ðggº, ðeeº, ðgeº, ðegº to
he Dicke basis, which can be derived from diagonalization of the
art of the effective Hamiltonian, HD = ‘

2

�

.�0 + �L/�
.1/
z + �L�

.2/
z

�

+

‘
�

Jeff�
.1/
+ �.2/* + J <eff�

.1/
* �.2/+

�

. The obtained eigenstates for the system
are given by

ðgº = ðggº;

sº = �ðgeº + �ðegº ;

ðaº = �ðgeº * �ðegº;

eº = ðeeº ; (21)

ith

=
Jeff

t

d2 + J 2eff
;

= d
t

d2 + J 2eff
;

=
t

�20_4 + J
2
eff * �0_2 : (22)

The eigenvalues corresponding to the states are

�e =
�0
2
+ �L;

�g = *
0

�0 + �L

1

;

2
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�s =
�0
2
+ �L +

v

4

�0
2

52
+ J 2eff ;

�a =
�0
2
+ �L *

v

4

�0
2

52
+ J 2eff : (23)

In order to express the Hamiltonian given in Eq. (18) in the new
basis, we follow the procedure given in [60]. In brief, if we denote by
�i the eigenvalues of HD and by �.�/ the projector on the eigenspace
of the open system relative to the energy �, the eigenoperators of HD
can be obtained by

A�.!/ =
É

�*�¤
�.�/A�.�¤/ =

4
É

k;l=1
ð�kºŒ�kðAð�lºŒ�lð : (24)

where the sum is extended to all the couples of � and �¤ such that
� * �¤ = !.

In this basis, the coherent part of the effective Hamiltonian can be
expressed as H .1/ = Hs +HIph, where

Hs = ‘
4
É

j=g;s;a;e
�jRjj + ‘
1

�

�
�

Res + Rag
�

+ �
�

Rsg * Rea
�

+H:c:
�

+‘
2
�

�
�

Rea + Rsg
�

+ �
�

Res * Rag
�

+H:c:
�

; (25)

and

HIph = ‘
É

q1

�q1
�

Ree + �2Rss + �2Raa + ��.Rsa + Ras/
�

�
�

b+q1e
i!Lt + bq1e

*i!Lt
�

+‘
É

q2

�q2
�

Ree + �2Rss + �2Raa * ��.Rsa + Ras/
�

�
�

b+q1e
i!Lt + bq1e

*i!Lt
�

; (26)

and the transformed operators are given by Rij = ðiºŒjð .i; j = e; a; s; g/.
We are now in a position to the derivation of the master equation

for the reduced density operator of the QDs, which can be achieved
by tracing the density matrix of the total system over the phonon bath
operators following the standard procedure [58,60]. By assuming the
Born–Markoff approximation, the density matrix of the quantum system
to second order of perturbation, results in

)�s
)t

= * i
‘
�

Hs; �s
�

* 1
‘2
T rB ˚

t

0
dt¤

�

HIph.t/HIph.t¤/�sB

*HIph.t/�sBHIph.t¤/ +H:c:
�

: (27)

Taking into account the statistical properties of the phonon baths,

Œb£qj .!
¤/º = Œbqj .!/º = 0 ;

Œb£qj .!
¤/bqj .!/º = nj .!/�.!

¤ * !/;

Œbqj .!
¤/b£qj .!/º = .nj .!/ + 1/�.!

¤ * !/ ; (28)

with nj = 1_.exp.‘!_KBT / * 1/ being the thermal average excitation
numbers of the heat baths of the two QDs, a lengthly but straight-
forward calculation leads the reduced master equation for the atomic
system (see Appendix A)
)�s
)t

= * i
‘
�

Hs; �s
�

+ Lph�s + LT �s ; (29)

where the Liovillian Lph�s is given by [32]

Lph�s = *
É

n=e;s;a
Fn

�

Rnn�s * 2Rnn�sRnn + �sRnn
�

*Fsa
�

Rss�s * 2Ras�sRsa + �sRss
�

* Fas
�

Raa�s * 2Rsa�sRas + �sRaa
�

+2Csa
�

Rss�sRaa + Raa�sRss
�

+ 2Cea
�

Ree�sRaa + Raa�sRee
�

+2Ces
�

Ree�sRss + Rss�sRee
�

: (30)

The coefficients Fij .j = a; s; e; g/ in Eq. (30) represent different decay
rates of the states ð� º, ð� º and ð� º and the coefficients C are cross
e s a ij t

4

decay terms involving diagonal matrix density terms. The most relevant
terms for the current work are the decay rates Fsa and Fas which
describe the bath-induced transition rate from ð�sº to ð�aº, and from
ð�aº to ð�sº, respectively. We will see later on that the imbalance
between this decay rates gives rise to the enhancement of entanglement
between the QDs. The different coefficients in Eq, (30) are given by

Fe =
�

n1.!q1/ + n2.!q1/ + 2
�

�pn;

Fs = �4
�

n1.!q1/ + 1
�

�pn + �4
�

n2.!q2/ + 1
�

�pn;

Fa = �4
�

n1.!q1/ + 1
�

�pn + �4
�

n2.!q2/ + 1
�

�pn;

Ces = �2
�

n1.!q1/ + 1
�

�pn + �4
�

n2.!q2/ + 1
�

�pn;

Cea = �2
�

n1.!q1/ + 1
�

�pn + �4
�

n2.!q2/ + 1
�

�pn;

Cas = �2�2
�

n1.!q1/ + n2.!q2 + 2/
�

�pn;

Fsa = �2�2
�

n1.2Jeff / + n2.2Jeff / + 2
�

�pn;

as = �2�2
�

n1.2Jeff / + n2.2Jeff /
�

�pn : (31)

ere, �pn =
‡

j=1;2
‡

qj

� �qj
‘

�2
�.!qj * 2Jeff / is the dissipation rate

nduced by the electron–phonon coupling [61] and thus may reveal the
nfluence of the phonon participation processes on the entanglement
etween the two QDs.

On the other hand, the Liovillian due to the interaction with the
acuum and cavity modes LT is [62]

T �s = *�s
�

.Ree + Rss/�s + �s.Ree + Rss/ * 2Rse�sRes * 2Rgs�sRsg
�

2
�

�� + �12
� �

Res�sRsg + Rgs�sRes
�

*�a
�

.Ree + Raa/�s + �s.Ree + Raa/ * 2Rae�sRea * 2Rga�sRag
�

*2
�

�� * �12
� �

Rae�sRag + Rga�sRea
�

*2�as
�

.Ras + Rsa/�s + *
�

Rga�sRsg + Rgs�sRsg + Rse�sRea + Rae�sRes
��

�

�2 * �2
�


�

Rae�sRsg + Rgs�sRea + Rse�sRag + Rse�sRag + Rga�sRes
�

; (32)

ith

a =
1
2
.�M1 +  * 2���12/;

s =
1
2
.�M1 +  + 2���12/;

�as =
1
2
.�2 * �2/�12 : (33)

he coefficients �a, and �s are the spontaneous emission rates of
he transitions. The interference term proportional to �as results from
pontaneously induced coherences between the symmetric and anti-
ymmetric transitions [62]. This term appears only in systems of atoms
ith different transition frequencies, i.e. �0 � 0. It is worth noting that

f we take 
1 = 
2 = 0, and � = 0, and the atoms have the same
ransition frequency (�0 = 0), Eq. (29) reduces to the results presented
n [47]. Here we incorporate the effects of the plasmonic cavity, the
honon baths and the presence of an external driving field. In the
ollowing we shall analyze the influence of the phonon environment
n entangled creation between the two QDs in presence of the MNP
nd the external coherent field, for identical (�0 = 0) and nonidentical
�0 � 0) atoms.

. Numerical results

For illustration of the numerical results, we choose a realistic hybrid
ystem consisting of two quantum dots near the MNP. We consider a
pherical gold MNP with radius a = 6 nm, plasma frequency !p =
:54 eV, damping constant p = 0:054 eV, and high-frequency limit
Ø = 9:45 [55]. With these parameters, the Drude model assumed in
q. (2) provides a reasonably good fit to tabulated experimental data
or photon energies smaller than 3 eV. The dielectric constant of the
ost material is taken as �B = 2:25. The dipole moment and decay rate
f the QD in vacuum are set to �eg = 0:7e nm and 11 = 22 �  = 60 �eV.
he distances R1 = R2 are set to 14 nm, unless otherwise stated. Using
hese experimental data we obtain from Eq. (8), g = g = 3:32 meV,
1 2
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and � = 54:96 meV. [63]. In addition the dipole–dipole interaction
JD takes the form JD = S�

�.1/eg �
.2/
eg

4��0‘.R1+R2/3
. Substituting the different

parameters we obtain JD = 0:06 eV.
The interaction with the phonon reservoir can be characterized by

the dissipation rate induced by the electron–phonon coupling, �pn =
‡

j=1;2
‡

qj

� �qj
‘

�2
�.!qj * 2Jeff / given in Eq. (31). Here we adopt the

established phonon spectral function, �pn ô
‘A
�kB

!3exp.* !2

2!2cut
/ð!=2Jeff ,

hich describes the electron–acoustic-phonon interaction via a defor-
ation potential, the dominant source of phonon scattering for InAs

nd GasAs QDs [64,65]. Here !cut is a cutoff frequency, A is a param-
ter that reflects the dissipation strength [66–68], and for the current
ystem, ! ô 2Jeff . We take typical values for A ô 11fs_K, and ‘!cut ô
:44meV , which have been extracted experimentally for a GaAs/InGaAs
uantum dot [67]. On the other hand Jeff = S�

�.1/eg �
.2/
eg

4��0‘R3
+ g1g2�c

�2_4+�2c
. By

ssuming R ô �, we obtain Jeff ô 1:3� 1012 Hz. Substituting this value
n the expression for the damping parameter �Ph, we obtain values of
he order of �Ph = 2:5.

We are interested in how the amount of entanglement varies when
he phonon reservoirs with temperature T are introduced. We begin by
xploring a situation in which the temperature of the baths is the same
T1 = T2) and is set near to zero, so the occupation numbers nj .!qj / ô 0
n Eq. (31). Later we shall release this restriction. To quantify the
rade of entanglement of a two-qubit system we use the concurrence
defined as [69]

= max^0;
ø

�1 *
ø

�2 *
ø

�3 *
ø

�4‘ ; (34)

�’s being the eigenvalues, in a decreasing order, of the matrix �� =
��y

…

�y�<�y
…

�y, where �< denotes the complex conjugation of �,
and �y is the y-component of the Pauli matrix. The case of C = 1
corresponds to the existence of the maximum entanglement between
the two qubits, and C = 0 means no entanglement between the qubits.

To see the dynamical phenomena of entanglement, in Fig. 2, the
dynamical evolution of the concurrence as a function of t is displayed

ith and without the presence of the phonon baths for different non-
ntangled initial states, namely  1.0/ = ðggº,  2.0/ = ðeeº,  3.0/ = ðegº

and finally we will consider a Bell state which is a maximally entangled
state ð	4.0/º =

1
2

�

ðegº + ðegº
�

.
For the case of 	1.0/ = ðggº we can see in Fig. 2a that in absence of

phonon interaction (�pn = 0,) the concurrence rise to a maximum and
hen reaches a non-null steady-state (C ô 0:2)) (solid curve). The result

is very different if the phonon bath is accounted for. For example, for
�pn = 2:5, after a sudden death period, the concurrence duplicates the
steady value (dashed curve).

Now, we turn our attention to the case where 	2.0/ = ðeeº, i.e., the
two quantum dots are in their excited state. In both cases without
and with phonons (Fig. 2b), sudden birth of entanglement takes place
because in order to become entangled, one or both atoms have to
decay to the ground state. We observe the so-called sudden birth of
entanglement starting at different times. These processes depend on
both the individual QD decay rate and the collective decay rate �M12 ,
which are modified by the presence of phonons.

Fig. 2c displays the concurrence for the case of 	3.0/ = ðegº, i.e. one
QD is in the excited state and the other one is on the ground state.
We can see again that in absence of phonon interaction (�pn = 0,) the
concurrence rise to a maximum and then becomes zero, and experience
a sudden death for a time range before reviving shortly after, reaching
a low steady-state value (solid curve). The result is very different
if the phonon bath is accounted for. For example, for �pn = 2:5,
entanglement persists along the time and the concurrence is clearly
enhanced (dashed curve).

Finally, we consider now how the presence of phononic baths affects
the loss of entanglement in the case of starting from a maximally
entangled state, ð	4.0/º =

1
2

�

ðegº + ðegº
�

. Realization of Bell states in
Ds has been proposed via excitons in a single dot [70] or in coupled
 o

5

QDs [71]. It is worth noting that different methods for creating entan-
gled states have been proposed recently. In particular STIRAP methods
for generating a specific type of two-qubit where the interqubit cou-
pling there was taken of a separable entangled state, has been described
in Refs. [72,73]. In addition, concerning to the system considered in
this work, where the mutual interqubit interaction is chosen to be of a
Heisenberg-type exchange character, it has been shown that a system of
two identical two-level atoms may be prepared in the symmetric state
by a short laser pulse [74], and by rapid adiabatic passage (RAP) with
chirped Gaussian pulses [75,76].

In order to show how an initially maximal entangled state ð	4.0/º =
1
2

�

ðegº + ðegº
�

can be prepared, we consider the Hamiltonian given
n Eq. (18) where the atoms are driven by a chirped Gaussian pulse
iven by 
.t/ = 
0e*t

2_.2�2/ei.!Lt+b_2t2/, where b is the chirp parameter,

0 defines the pulse amplitude, � its duration, and !L its central
frequency. We take a pulse of � = 4 ps, so that we can ignore in a
first approximation the QDs decay processes, which are of the order of
several hundred picoseconds. To analyze the dynamics of the system we
normalize the different parameters to the pulse duration, i.e, we define
the dimensionless parameters b�2, 
0�, and Jeff �, and we consider
dentical QDs, i.e. �0 = 0.

Fig. 3a shows the population dynamics during the excitation with
0 = 5�, b = *2�2 and �L0 = *J�. Before the laser pulse, the system

s in the ground state ðggº. During the pulse �gg drops down (dashed
ine), while a transient occupation of the collective state �ss occurs.
roundt = 0 a population transfer to the collective excited state ðeº =
eeº takes place. Finally, the ðsº state is almost completely occupied.
ig. 3b shows the concurrence C as a function of the dimensionless
arameters b�2, and J� in the resonant case �0 = 0. It can be seen that
aximum value of concurrence can be obtained over a wide range of

alues of chirp and coupling. From Fig. 3b we can maximum entangled
tate can be obtained for a value of Jeff � in the range 1 < Jeff � < 4,
.e. Jeff ô 4_4ps ô 1012 Hz, which is compatible with the Jeff values
eached in our system, in the order of 1:2 � 1012 Hz.

Once the initial state is prepared, we apply a constant amplitude
ield over time to see the time evolution of the concurrence when the
ystem is initially in a maximally entangled state in absence and in
resence of phononic baths. Fig. 3c shows that unlike the other cases,
oth curves for t = 0 have unity C since our initial state is maximally
ntangled state. At early times,in both cases the concurrence decreases
hich means a considerable loss of entanglement and for the case of
PH = 2:5, we observe the so-called sudden death of entanglement
ollowed by a revival (dashed line). However, at long times reaches

steady-state value greater than the value obtained in the case of
PH = 0. We can conclude that in this regime of temperatures, the
ntanglement loss is lower than in the case without phonons.

In summary, an overall comparison of all considered initial states in
igs. 2 and 3 reveals that the quantum correlations between the QDs,
xpressed with the concurrence C are enhanced when the phononic
aths are taking into account. Of course the reached steady-state con-
urrence is the same value, independently of the initial state.

In order to explain the numerical results displayed in Fig. 2, it is
seful to analyze the evolution of populations of the symmetric and
ntisymmetric states, since a direct expression for concurrence can be
btained in the case of weak driving field [77]. We focus in the case
n which the initial state is 	 .0/ = ðegº, since a direct expression for
oncurrence can be obtained for a weak driving field [77]:

ô
t

.�ss * �aa/2 + 4Im.�as/ * 2
t

.�gg * �ee/ : (35)

This equation tell us that the greater the difference in populations
�ss*�aa, the greater the concurrence, so we will have to try to populate
the symmetric or antisymmetric state with a high probability.

In Fig. 2c we have considered the case �L = �0 = 0, i.e., the
Ds have the same transition frequency. Therefore, from Eq. (22) we
btain � = � = 1_

ø

2 and the decay rates take the values � = 0,
as
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ð

�

�

Fig. 2. Time evolution of the concurrence of the two qubits for different phonon strengths �ph = 0 (solid curve), �ph = 2:5 (dashed curve), and different initial states: (a)
	 .0/ = ðggº, (b) 	 .0/ = ðeeº, and (c) 	 .0/ = ðegº.
Fig. 3. (a) Final occupation of the states ðgº (dashed line), ðsº (solid line), and ðeº (dotted line), after excitation with a laser pulse with pulse amplitude 
0 = 5� and chirp
coefficient b = *2�2. (b) Concurrence as a function of the dimensionless linear chirp, b�2, and coupling J� in the case �0 = 0 and 
0 = 5�. (c) Time evolution of the concurrence
of the two qubits for different phonon strengths �ph = 0 (solid curve), �ph = 2:5 (dashed curve) after excitation with a constant field and initial state 	 .0/ = 1

2

�

ðegº + ðgeº
�

.

�

T
a

�M1 = �M2 = �M , and �M12 = �M21 . In addition we have assumed
that 
1 = 
2. Thus, from the derived Hamiltonian in the Dicke basis
(Eq. (25)), we can obtain the time evolution of the symmetrical and
antisymmetrical populations given by (see Appendix B)

� ee.t/ = *2
�

�s + �a
�

�ee ;

� .t/ = *2
�

�M + �M +  + F
�

� + 2� �
ss 12 sa ss s ee ð

6

+ i 2
ø

2

1.�se * �es/ + i

2
ø

2

1.�sg * �gs/ ;

� aa.t/ = *2
�

�M * �M12 +  + Fas
�

�aa + 2Fsa�ss + 2�a�ee: (36)

he decay processes in Eqs. (36) can be represented for collective levels
s in Fig. 4d. It is clear that two cascade channels ðeº � ðsº � ðgº and
eº � ðaº � ðgº, which are shown in Fig. 4(d), have different decay
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Fig. 4. (a) Time evolution of the concurrence of the two qubits for different phonon strengths �ph = 0 (solid curve), �ph = 2:5 (dashed curve) for the initial state ð	3.0/ = ðegº. (b)
ime evolution of the symmetric (solid) and antisymmetric state population (dashed) for �pn = 0. (c) Time evolution of the symmetric (solid) and antisymmetric state population
dashed) for �pn = 2:5. Other parameters are:  = 60�, �c = 2 � 102, �L = 0, and �0 = 0 eV � = 54:96 meV, and g1 = g2 = 3:32 meV. (d) Decay processes in the Dicke basis. The
wo-qubit cooperative states are ð�iº where .i = e; s; a; g/, stand for excited, symmetrical, antisymmetrical and ground Dicke states, respectively. The superradiant and subradiant
ecay rates are: s = �M +  + 2���M

12 and sub = �M +  * 2���M
12 .
r
o

a
r
h
n

a
o
s
f

ates: the symmetric transitions decay with an enhanced (superradiant)
ate s = �M ++2���M12 , whereas the antisymmetric transitions decay
ith a reduced (subradiant) rate sub = �M +*2���M12 . More interest-

ngly, the interaction with the phonon subsystem opens two additional
ecay channels, one is channel ðsº � ðaº with a decay rate Fsa, and
he other is ðaº � ðgº with a decay rate Fas. Fig. 4(b) displays the
ynamical evolution of populations �ss and �aa in absence of phonon
ath, i.e, �pn = 0. It can be seen that at early times, the populations
re very different, which leads to a high value of the concurrence
see Eq. (35). Then, at certain time both populations become equal,
hich is related to the appearance of the sudden death. For long times

he symmetrical and antisymmetrical states tend to populate almost
qual, keeping their difference to a low value. This can be qualitatively
xplained as follows: since Fsa = �2�2

�

n1.2Jeff / + n2.2Jeff / + 2
�

�ph
nd Fas = �2�2

�

n1.2Jeff / + n2.2Jeff /
�

�ph, for the case �pn = 0, we
ave Fas = Fsa = 0, and the decay channels ðsº � ðaº and ðsº � ðaº
isappear. In addition, the term proportional to 2Fsa�ss in Eq. (36) for
� aa, which represents a pumping term, also disappears. Thus the differ-
nce ð�aa * �ssð is near to zero. However when the phonon coupling is
ccounted for (�pn = 2:5), Fig. 4(c) clearly shows that population tends
o accumulate in the antisymmetric state �aa, and more importantly,
he difference ð�aa * �ssð is always greater than the case with �pn =
. This fact is responsible for the enhancement of the concurrence
ppearing in Fig. 2. Therefore, the enhancement of the concurrence
an be explained by the fact that phonons change the effective decay
ates of the transitions between the collective states: for the case �pn =
:5, Fsa ‚ Fas, the decay channel ðeº � ðaº is activated and the
ntisymmetrical state gets more populated than the symmetrical one.
n general, any difference between the decay processes between the
ransitions ðeº � ðsº � ðgº and ðeº � ðaº � ðgº will affect the

concurrence. Note that Fsa and Fas depend on external parameters such
s �0, �L and 
j , among others, so concurrence can be controlled by
hanging them. This will be accomplished in the following.

A more general behavior of temporal evolution of the concurrence
or different values of the Rabi frequency of the driving field is dis-
layed in Fig. 5. In absence of coupling to the phonons (Fig. 5(a)),
oncurrence values rise to a maximum for early time and then go
7

to zero for low values of the Rabi frequency. When Rabi frequency
increases, a low steady-state value is reached after sudden death en-
tanglement. For high Rabi frequency values, concurrence is near zero.
The entanglement is substantially enhanced when the coupling with
phonons is accounted for. If we compare with the results displayed in
Fig. 5(b), we can see that entanglement appears for all time instants and
concurrence values of the order of 0.5 are achieved for a large set of
Rabi frequency. In sort, the presence of phonons, at this level, improves
the concurrence and therefore the entanglement at steady-state.

Now we analyze the influence of external parameters such as the
detuning of the driving field and the transition frequency of the QDs.
In Fig. 6(a) the concurrence versus t, for different detunings �L
is displayed. We can see that the steady-state concurrence reach a
maximum value for �L = *13, i.e. when �L = *Jeff .

Until now we have assumed that the QDs have the same transition
frequency (�0 = 0). However it is technically challenging to have two
separate QDs with the same resonance frequency due to their wide
spectral variations, making it extremely unlikely that two QDs will
be resonant with the external field simultaneously [78]. In Fig. 6(b)
we analyze this nonsymmetric situation in which the two QDs have
different transition frequencies, i.e. �0 � 0. In this case, it is evident
from Eq. (22) that different values of �0 change the values of the
parameters � and �, which determine the final values of the decay
ates given in Eqs. (31). Here we observe that maximum concurrence
ccurs for the case of identical atoms (�0 = 0), decreasing to zero as the

difference between its frequencies increases. The reason is again due
to the difference between the decay processes between the transitions
ðeº � ðsº � ðgº and ðeº � ðaº � ðgº, as shown in Fig. 6c, where Fsa
nd Fas are displayed versus �0. The difference between both decays
eaches a maximum value at �0 = 0 and then decreases to zero for
igh values of �0. This explains the fact that concurrence decreases for
onidentical atoms.

In order to check the robustness of the entanglement agains of vari-
tions of plasmonic cavity parameters � and �c , the temporal evolution
f the concurrence is shown in Fig. 7. It can be seen that the steady-
tate concurrence remains relatively high even if the values of � change
or an order of magnitude (Fig. 7a). Similar results occur for changes
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Fig. 5. (a) Concurrence versus time and Rabi frequency of the driving field without
honons (�ph = 0. (b) Concurrence versus time and Rabi frequency of the driving field

in presence of phonons (�ph = 2:5). The initial state is ð	3.0/ = ðegº. Other parameters
are: �c = 2 � 102, � = 9 � 102, and g1 = g2 = 50, �L = 0, and �0 = 0.

in the detuning �c (Fig. 7(b)). However when the cavity detuning �c is
large (dashed curve), the plasmonic cavity is far of resonance with the
driving field, and concurrence decreases significantly.

The above results have been obtained considering a phonon baths
temperatures near to zero. In order to analyze the dependence with the
temperature Fig. 8(a) displays temporal evolution of the concurrence
for different temperatures of the phononic bath. In this case, all decay
terms in Eq. (31) all terms grow because of their dependency on the
thermal average excitation numbers nj = 1_.exp.‘!_KBT / * 1/ of the
heat baths. As might be expected, we observe that when the tempera-
ture TB of the bath increases, the concurrence decreases at all times. For
TB > 10K, concurrence is lower than the one obtained without phonons
(green curve). Fig. 8(b) also shows that the steady-state concurrence
decreases from a maximum value of 0.4 to 0 as the temperature TB
increases above TB > 30K. This occurs because the mean number
of phonons of both reservoirs for TB > 30K reaches high values,
i.e. n1 = n2 ‚ 1. Moreover this implies that the decay rates Fsa and Fas
between the subradiant and superradiant states reach the same value,
i.e., Fsa ô Fas. In this situation, populations �aa and �ss reach the same
values, and concurrence tends to zero. The dashed line indicates the
maximum value of the concurrence in absence of phonons. Therefore,
the enhancement induced by the phonon environment is only effective
at low temperatures. For higher temperatures, the phonon bath destroys
the entanglement.
8

4. Discussion and summary

In summary, we have analyzed the entanglement between two
qubits near a MNP driven by a coherent field taking into account
the coupling with a phonon environment. An effective Hamiltonian
for the atomic subsystem is derived by adiabatically eliminating the
plasmonic cavity modes, which allows us to solve the master equation
for the qubits. We have shown that steady-state entanglement can
be enhanced by the coupling with a phonon bath for some range of
temperatures. We have explained the underlying physical mechanisms
based in terms of the induced transitions among the symmetrical
and antisymmetrical two-qubit collective states. We have analyzed the
effects on entanglement for different parameters, which can be exper-
imentally controlled. In particular, it is found that concurrence can
be modified by appropriately tuning qubit detunings and the driving
Rabi frequency. Further, the entanglement is found to be robust against
small perturbations in the transition frequencies of the QDs and the
frequency of the driving field. We have verified that the concurrence is
not destroyed through the interaction with the environment and that
it remains stable for proper range of temperatures. As a consequence,
it is possible to control the dynamic evolution of two qubits and the
entanglement generation and preservation, which may have important
applications in controllable quantum devices.
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Appendix A. Derivation of the liovillian Lph�

From Eq. (27), the Liouvillian due to the interaction with the
phonon environments is given by

Lph�s � * 1
‘2
T rB ˚

t

0
dt¤

�

HIph.t/HIph.t¤/�sB *HIph.t/�sBHIph.t¤/ +H:c:
�

:

(A.1)

here �sB is the matrix density of the complete system and HIph given
by

HIph.t/ = ‘
É

q1

�q1
�

Ree + �2Rss + �2Raa + ��.Rsa + Ras/
�

�
�

b+q1e
i!Lt + bq1e

*i!Lt
�

‘
É

q2

�q2
�

Ree + �2Rss + �2Raa * ��.Rsa + Ras/
�

�

b+q1e
i!Lt + bq1e

*i!Lt
�

; (A.2)

We introduce the notations

j .t/ = ‘
É

qj

�qj
�

b+qj e
i!Lt + bqj e

*i!Lt
�

.j = 1; 2/; (A.3)

o the Eq. (A.2) can be cast as

Iph.t/ = Ree
�

A1.t/ + A2.t/
�

+ Rss
�

�2A1.t/ + �2A2.t/
�

+Raa
�

�2A1.t/ + �2A2.t/
�

+ ��
�

A1.t/ * A2.t/
� �

Rsa + Ras
�

; (A.4)

Inserting Eq. (A.4) in Eq. (A.1) we obtain

Lph�s = T rB
t
dt¤[Ree.t/�s .t/Bee.t/Bee.t¤/ + Rss.t/�Bss.t/Bss.t¤/
˚0 B
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