Publication:
Evaluación de la fiabilidad del programa basado en Inteligencia Artificial Denti.Ai para la identificación de estructuras y tratamientos dentarios presentes en radiografías panorámicas.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Introducción La implantación de protocolos digitales, incluidos herramientas de Inteligencia artificial en el ámbito odontológico ha supuesto una completa revolución en la rutina diaria de los clínicos dedicados a la profesión. Actualmente, el uso de softwares que complementan el diagnóstico clínico realizado por el profesional están siendo cada vez más desarrollados e implementados en la rutina diaria. Objetivo Evaluar la capacidad de diagnostico del programa basado en inteligencia artificial “Denti.Ai” en relación a las estructuras y tratamientos dentarios presentes en ortopantomografías (OPGs). Material y Método Un total de 300 radiografías panorámicas (OPG) de pacientes adultos fueron aleatoriamente seleccionadas y utilizadas para la consecución de este estudio. Las imágenes fueron analizadas manualmente por dos operadores con experiencia en radiodiagnóstico, indicando y clasificando las piezas dentarias (Nomenclatura FDI) y tratamientos presentes en ellas (obturaciones metálicas, RM; obturaciones plásticas, RP; Tratamiento de Conductos, TC; Coronas, C; Implantes, IOI). En el caso de discrepancia en el diagnóstico un 3 evaluador tomó parte en la decisión final. Posteriormente las imágenes fueron cargadas y analizadas por el software Denti.Ai. Los resultados fueron registrados y analizados mediante la realización de un estudio estadístico basado en la utilización de estadística descriptiva, realización de pruebas diagnósticas: sensibilidad (S), especificidad (E), valor predictivo positivo (VPP), valor predictivo negativo (VPN) del programa Denti.Ai, y su posterior representación en Curvas de Roc; y pruebas de concordancia. Resultados El programa Denti.Ai es capaz de identificar correctamente las estructuras dentarias en el 69.3% de los casos, obteniendo errores de diversas categorías en 30.7% restante. Su precisión diagnóstica para la detección de tratamientos dentarios es de 41.11% para restauraciones plásticas, 85.48% para restauraciones metálicas, 91.9% para tratamientos de conductos, 89.53% para coronas y 100% para implantes osteointegrados. La concordancia obtenida entre el Gold Standard y el programa fue siempre superior al 0.90. Conclusiones Denti.Ai puede considerarse un software cuyas tareas permiten dar soporte y asistencia al profesional odontólogo en procesos de diagnóstico, prevención y pronóstico dentarios. Mayor número de estudios implicados en la capacidad diagnóstica del programa deberían ser desarrollados con el fin de mejorar el desempeño del mismo.
Description
Trabajo de Fin de Máster en Ciencias Odontológicas, Facultad de Odontología UCM, Departamento de Odontología Conservadora y Prótesis, Curso 2020/2021
Keywords
Citation
1. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: Current applications and future perspectives. Quintessence Int (Berl). 2020;51(3):248–57. 2. Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry – A systematic review. J Dent Sci. 2020;1–15. 3. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res [Internet]. 2020 Jul 21 [cited 2020 Oct 12];99(7):769–74. Available from: http://journals.sagepub.com/doi/10.1177/0022034520915714 4. Tandon D, Rajawat J. Present and Future of Artificial Intelligence in Dentistry. J Oral Biol Craniofacial Res [Internet]. 2020;1--20. Available from: http://dx.doi.org/10.1016/j.jobcr.2017.01.002 5. Gomolin A, Netchiporouk E, Gniadecki R, Litvinov I V. Artificial Intelligence Applications in Dermatology: Where Do We Stand? Front Med. 2020;7(March):1–7. 6. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput Methods Programs Biomed. 2017;150:9–22. 7. Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A. Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging. 2017;36(3):849–58. 8. Yu C, Yang S, Kim W, Jung J, Chung KY, Lee SW, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One. 2018;13(3):1–14. 9. Joda T, Waltimo T, Probst-Hensch N, Pauli-Magnus C, Zitzmann NU. Health Data in Dentistry: An Attempt to Master the Digital Challenge. Public Health Genomics. 2019;22(1–2):1–7. 10. Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S. Dentronics: Towards robotics and artificial intelligence in dentistry. Dent Mater [Internet]. 2020 Jun [cited 2020 Oct 12];36(6):765–78. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0109564120300762 11. Lang T, Staufer S, Jennes B, Gaengler P. Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy. BMC Oral Health. 2014;14(1):1–9. 12. Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, et al. Catalytic antimicrobial robots for biofilm eradication. Sci Robot. 2019;4(29):1–14. 13. Ortiz Simon, Jose Luis; Minor Martínez, Arturo; Lorias Espinoza, Daniel; Romero Velázquez JG. Mechatronic assistant system for dental drill handling. Int J. 2011;(7):22– 6. 14. Rodr E, Kypson AP, Moten SC, Nifong LW, Jr WRC. Robotic mitral surgery at East Carolina University : Int J. 2006;(April):211–5. 15. Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics. Evaluation of a fully automated cephalometric analysis using a customizwed convolutional neural network. Jorunal Orofac Orthop. 2020;(81):52–68. 16. Takahashi T, Nozaki K, Gonda T, Mameno T, Wada M, Ikebe K. Identification of dental implants using deep learning—pilot study. Int J Implant Dent [Internet]. 2020 Dec 22 [cited 2020 Oct 12];6(1):53. Available from: https://journalimplantdent.springeropen.com/articles/10.1186/s40729-020-00250-6 17. Erpaçal B, Adıgüzel Ö, Cangül S. The use of micro-computed tomography in dental applications. Int Dent Res. 2019;9(2):78–91. 18. Boeddinghaus R, Whyte A. Dental panoramic tomography: An approach for the general radiologist. Australas Radiol. 2006;50(6):526–33. 19. Ludlow JB, Davies-Ludlow LE, White SC. Patient Risk Related to Common Dental Radiographic Examinations. J Am Dent Assoc. 2008;139(9):1237–43. 20. Abdalla-Aslan R, Yeshua T, Kabla D, Leichter I, Nadler C. An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2020 Jun [cited 2020 Oct 12]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S221244032031018X 21. Kim J, Lee HS, Song IS, Jung KH. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci Rep. 2019;9(1):1–10. 22. Aliaga I, Vera V, Vera M, García E, Pedrera M, Pajares G. Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artif Intell Med [Internet]. 2020 Mar [cited 2020 Oct 12];103(101816):1–17. Available from: https://linkinghub.elsevier.com/retrieve/pii/S093336571930421X 23. Rushton VE, Horner K, Worthington H V. Screening panoramic radiology of adults in general dental practice: Radiological findings. Br Dent J. 2001;190(9):495–501. 24. Patanachai N, Covavisaruch N, Sinthanayothin C. Wavelet transformation for dental Xray radiographs segmentation technique. Proc - 2010 8th Int Conf ICT Knowl Eng ICT KE 2010. 2010;103–6. 25. Poonsri A, Aimjirakul N, Charoenpong T, Sukjamsri C. Teeth segmentation from dental x-ray image by template matching. BMEiCON 2016 - 9th Biomed Eng Int Conf. 2017;10– 3. 26. Oliveira JF, Proença H. Dental X-Ray: A Data Set of Panoramic Dental Radiographs for Stomatologic Image Processing Purposes. Computational Methods in Applied Sciences. 2011. 27. Vranckx M, Van Gerven A, Willems H, Vandemeulebroucke A, Leite AF, Politis C, et al. Artificial intelligence (Ai)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs. Int J Environ Res Public Health. 2020;17(10):1–14. 28. Leite AF, Gerven A Van, Willems H, Beznik T, Lahoud P, Gaêta-Araujo H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Investig. 2020;1–11. 29. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77(June):106– 11. 30. Jae-Hong L, Do-Hyung K, Seong-Nyum J. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2019;(26):152–8. 31. Tuzoff D V., Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiol [Internet]. 2019 May [cited 2020 Oct 12];48(4):1– 10. Available from: https://www.birpublications.org/doi/10.1259/dmfr.20180051 32. Xu X, Liu C, Zheng Y. 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks. IEEE Trans Vis Comput Graph. 2019;25(7):2336–48. 33. McDavid WD, Langlais RP, Welander U, Morris CR. Real, double, and ghost images in rotational panoramic radiography. Dentomaxillofac Radiol. 1983;12(2):122–8. 34. Schwendicke F, Golla T, Dreher M, Krois J. Convolutional Neural Networks for dental image diagnostics: A scoping review. J Dent [Internet]. 2019;91:1–14. Available from: https://doi.org/10.1016/j.chieco.2019.101362 35. Devito KL, de Souza Barbosa F, Filho WNF. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2008;106(6):879–84. Available from: http://dx.doi.org/10.1016/j.tripleo.2008.03.002 36. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol. 2019;48(3):1–7. 37. Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129(6):635–42. 38. Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med [Internet]. 2017;80:24–9. Available from: http://dx.doi.org/10.1016/j.compbiomed.2016.11.003 39. Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. J Endod [Internet]. 2020 Jul [cited 2020 Oct 12];46(7):987–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0099239920302351 40. Lin N-H, Lin T-L, Wang X, Kao W-T, Tseng H-W, Chen S-L, et al. Teeth Detection Algorithm and Teeth Condition Classification Based on Convolutional Neural Networks for Dental Panoramic Radiographs. J Med Imaging Heal Informatics. 2018;8(3):509–13. 41. Wirtz A, Wambach J, Wesarg S. Automatic teeth segmentation in cephalometric X-ray images using a coupled shape model. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. p. 194–203. 42. Keshtkar F, Gueaieb W. Segmentation of dental radiographs using a swarm intelligence approach. Can Conf Electr Comput Eng. 2006;(May):328–31. 43. Rad AE, Rahim M, Kumoi R, Norouzi A. Dental x-ray image segmentation and multiple feature extraction. 2nd World Conf Innov Comput Sci - 2012 Dent. 2012;(May 2014):188–97. 44. Lin PL, Huang PY, Huang PW. An effective teeth segmentation method for dental periapical radiographs based on local singularity. ICSSE 2013 - IEEE Int Conf Syst Sci Eng. 2013;407–11. 45. Dighe S, Revati S. Preprocessing , Segmentation and Matching of Dental Radiographs used in. Int J Sci Appl Inf Technol. 2012;1(2278):52–6. 46. Silva G, Oliveira L, Pithon M. Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives. Expert Syst Appl. 2018;107:15–31. 47. Moutselos K, Berdouses E, Oulis C, Maglogiannis I. Recognizing Occlusal Caries in Dental Intraoral Images Using Deep Learning. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2019;1617–20. 48. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36(4):337–43. 49. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23. 50. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. J Dent Res. 2020;99(3):249– 56. 51. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(4):424–30.