Publication:
Evaluación de las propiedades mecánicas de flexión de materiales CAD/CAM de polímero con grafeno y circona. Estudio experimental in vitro.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
CONCLUSIONES Tras la realización de este estudio experimental, el análisis de los datos obtenidos en el ensayo de flexión y revisión de la literatura científica sobre el tema podemos concluir que: • La resistencia a la flexión de los especímenes de PMMA dopados con grafeno fue inferior al grupo de probetas de zirconio y al grupo control de CrCo, ofreciendo este unos valores de resistencia a la flexión muy elevados. • El material analizado que menor módulo de Young presento fue el PMMA enriquecido con grafeno, en comparación con el módulo de las muestras de dióxido de zirconio y el grupo control de CrCo, el cual presento un módulo extremadamente elevado, denotando su altísima rigidez. • Las muestras de biopolímero de grafeno, tras aplicar el ensayo de tres puntos, ha dado unos valores reducidos para la resistencia a la flexión, quedando por debajo de los valores ofrecidos por el dióxido de zirconio y muy por debajo del grupo control, no considerándose, con el material y método empleado, una buena alternativa para realizar rehabilitaciones definitivas.
Description
Trabajo de Fin de Máster en Ciencias Odontológicas, Facultad de Odontología UCM, Departamento de Odontología Conservadora y Prótesis, Curso 2020/2021
Keywords
Citation
1. Álvarez-Fernández MA, Peña-López JM, González-González IR, Olay-García MS. Características generales y propiedades de las cerámicas sin metal. RCOE 2003;8:525- 46. 2. Pröbster L. El desarrollo de las restaturaciones completamente cerámicas. Un compendio histórico. Quintessence (ed española) 1998;11: 515-9. 3. Kelly JR, Nishimura I, Campell SD. Ceramics in dentristry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32. 4. Benítez Hita JA, García de Sola MC, García Aragón MA. Cerámica. Recuerdo histórico: primera parte. Revista Andaluza de Odontología y Estomatología 1992; 2 (2): 63-68. 5. Martínez Rus Francisco, Pradíes R, Suárez García MJ, Rivera Gómez B. Cerámicas dentales: clasificación y criterios de selección. RCOE [Internet]. 2007 Dic [citado 2020 Dic 12] ; 12( 4 ): 253-263. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1138- 123X2007000300003&lng=es 6. Álvarez-Fernández MA, Peña-López JM, González-González IR, Olay-García MS. Características generales y propiedades de las cerámicas sin metal. RCOE2003;8(5):525-546 7. Castro-Aguilar EG, Matta-Morales CO, Orellana-Valdivieso O. Consideraciones actuales en la utilización de coronas unitarias libres de metal en el sector posterior. Rev. Estomatol. Herediana [Internet]. 2014 Oct [citado 2020 Dic 12] ; 24( 4 ): 278- 286. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1019- 43552014000400010&lng=es 8. Ríos Szalay E, Garcilazo Gómez A, Guerrero Ibarra J, Meade Romero I, Miguelena Muro K. Estudio comparativo de la resistencia al desplazamiento de cuatro cementos en zirconia. Rev. Odont. Mex [revista en la Internet]. 2017 Dic [citado 2020 Dic 12] ; 21( 4 ): 235-240. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870- 199X2017000400235&lng=es 9. Garcia J, Rodriguez M, Montece E.R, Lima K. Importancia del Zirconio para prótesis parcial fija libre de metal. 2017 Dom. Cien.33(3); 613-627 10. Birrer, N. M. R. Materiales cerámicos del sistema Mullita Zirconia Zircón; propiedades mecánicas, de fractura y comportamiento frente al choque térmico.2009. Tese de Doutorado Departamento de química, Universidad Nacional de La Plata, La Plata. 11. Moraes, M. C. S. B., Microestrutura e Propriedades Mecânicas de Compósitos Alumina-Zircônia para Próteses Dentárias. (2004). Tesis Doctoral, Instituto Militar de Engengaria, Rio de Janeiro. 12. Tahriri M, Del Monico M, Moghanian A, Tavakkoli M, Torres R, Yadegari A, Tayebi L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019 Sep; 102:171-185. doi: 10.1016/j.msec.2019.04.051. Epub 2019 Apr 16. PMID: 31146988.) 13. Torres-Silva, H, López-Bonilla, J.L. Aspectos quirales del grafeno. Ingeniare. Revista chilena de ingeniería. (2011).19(1), 67-75. https://dx.doi.org/10.4067/S0718- 33052011000100008) 14. Jiménez JA, Arana V, Franco A. Síntesis de nanotubos de carbono multicapa sobre sustratos metálicos por el método de depósito químico de vapores: no todos los nanotubos son iguales. Mundo nano [revista en la Internet]. 2017 Dic [citado 2020 Dic 12]; 10( 19 ): 93-108. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448- 56912017000200093&lng=es. Epub 21-Ago-2020. https://doi.org/10.22201/ceiich.24485691e.2017.19.57211. 15. García Pellicer AJ. Comportamiento mecánico y caracterización de resinas autopolimerizables aditivadas con nanofibras de grafeno para el refuerzo implantoprotético de prótesis híbridas. 2016. 16. García Martínez V. Estudio de la estabilidad del oxido de grafeno con el tiempo [trabajo de fin de máster]. Oviedo: Repositorio Institucional Universidad de Oviedo; 2013. 17. Xie H, Cao T, Rodríguez FJ, Luong EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications, Dental Materials, 2017. Volume 33(7): 765-774 18. Iijima S. Helical microtubules of graphitic carbon.Nature.1991; 354: 56-58 19. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993; 363: 603-605) 20. Daenen, M., De Fouw, R.D., Hamers, B., Janssen, P.G.A., Schouteden, K., Veld, M.A.J., “The wondrous world of carbon nanotubes, a review of current carbon nanotube technologies”, Eindhoven University of Technology, Chemical Engineering and Chemistry and Applied Physics Departments, (2003). 21. Latorre, N., Ubieto, T., Royo, C., Romeo, E., Villacampa, J.I., Sánchez Blas, E., Monzón, A., Materiales nanocarbonosos: nanotubos y nanofibras de carbono: Aspectos básicos y métodos de producción. Ingeniería Química 417, 200-208 (2004). 22. Van Noorden, R. Production: Beyond sticky tape. Nature 483, S32–S33 (2012). https://doi.org/10.1038/483S32a 23. Bonnaccorso, F. et al. «Production and processing of graphene and 2d crystals». Materials Today. 2012; 15 (12): 564-589 24. Rodríguez González C. 2012. Obtención de hojas de óxido de grafeno para el desarrollo de nanocompositos poliméricos. Tesis de Doctorado. Universidad Autónoma de Nuevo León. pp1-22. 25. Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530-1534. 26. Merino del Amo N. Fabricación y caracterización de materiales compuestos de matriz metálica reforzados con nanofibras de carbono [tesis doctoral]. Madrid: E-Prints Complutense, Universidad Complutense de Madrid; 2010. 27. Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine. 2011; 6(2): 317-324. 28. McNally, T.; Pötschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S.E.J.; Brennan, G.P.; Bein, D.; Lemoine, P.; Quinn, J.P. Polyethylene multiwalled carbon nanotube composites. Polymer 2005, 46, 8222–8232. 29. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement to the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388. 30. Pereira, V. M.; Neto, A. H. C. A tight-binding approach to uniaxial strain in graphene. Physical Review B 2008, 80, 1-8. 31. Morales Antigüedad G. Procesado y caracterización de materiales compuestos de matriz polimérica reforzados con nanofibras de carbono para aplicaciones tecnológicas [tesis doctoral]. Madrid: E-Prints Complutense, Universidad Complutense de Madrid; 2008. 32. Novoselov, K. S., D. Jiang et al. Two dimensional atomic crystals, PNAS (UnitedKingdom y Rusia), 2005, Vol.102, núm.30, pp. 10451-10453. 33. Yang W, Deng X, Huang W, Qing X, Shao Z. The Physicochemical Properties of Graphene Nanocomposites Influence the Anticancer Effect. J Oncol. 2019 Jul 3;2019:7254534. doi: 10.1155/2019/7254534. PMID: 31354821; PMCID: PMC6636583. 34. Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials (Basel). 2020 Sep 7;10(9):1770. doi: 10.3390/nano10091770. PMID: 32906829; PMCID: PMC7557393. 35. Juanico Lorán JA. Síntesis y caracterización de nanofibras de carbono para su aplicación en la adsorción de gases tóxicos [trabajo de fin de máster]. México: IAEA Publications; 2004. 36. Juanico Lorán JA. Síntesis y caracterización de nanofibras de carbono para su aplicación en la adsorción de gases tóxicos [trabajo de fin de máster]. México: IAEA Publications; 2004. 37. García Pellicer AJ. Comportamiento mecánico y caracterización de resinas autopolimerizables aditivadas con nanofibras de grafeno para el refuerzo implantoprotético de prótesis híbridas. 2016. 38. Azevedo L, Antonaya-Martin JL, Molinero-Mourelle P, Del Río-Highsmith J. Improving PMMA resin using graphene oxide for a definitive prosthodontic rehabilitation - A clinical report. J Clin Exp Dent. 2019 Jul 1;11(7):e670-e674. doi: 10.4317/jced.55883. PMID: 31516667; PMCID: PMC6730997., 39. Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel). 2020 Oct 8;12 (10):2299. doi: 10.3390/polym12102299. PMID: 33049984; PMCID: PMC7599472. 40. McCabe JF, Walls AWG. Applied Dental Materials. 9ª ed. Oxford: BlackwellPublishing Ltd.; 2008: 101-123. 41. Gautam, R.; Singh, R.D.; Sharma, V.P.; Siddhartha, R.; Chand, P.; Kumar, R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J. Biomed. Mater. Res. Part B 2012, 100, 1444–1450. [CrossRef] [PubMed] 42. Jorge, J.H.Giampaolo, E.T.Machado, A.L. Vergani, C.E. Cytotoxicity of denture base acrylic resins: A literature review. J. Prosthet. Dent. 2003, 90, 190 43. Kedjarune, U. Charoenworaluk, N. Koontongkaew, S. Release of methyl methacrylate from heat-curved and autopolymerized resins: Cytotoxicity testing related to residual monomer. Aust. Dent. J. 1999, 44, 25–30. 44. Thaitammayanon, C. Sirichompun, C. Wiwatwarrapan, C. Ultrasonic treatment reduced residual monomer in methyl methacrylate-based orthodontic base-plate materials. Dent. Oral. Craniofac. Res. 2018, 4, 1–5. 45. Tuna, S.H. Keyf, F. Gumus, H.O. Uzun, C. The evaluation of water sorption/solubility on various acrylic resins. Eur. J. Dent. 2008, 2, 191–197. 46. Saini, R. Kotian, R. Madhyastha, P. Srikant, N. Comparative study of sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. Indian J. Dent. Res. 2016, 27, 288–294 47. Wei Wang, Susan Liao, Yuhe Zhu, Ming Liu, Qian Zhao, Yating Fu, "Recent Applications of Nanomaterials in Prosthodontics", Journal of Nanomaterials, vol. 2015, Article ID 408643, 11 pages, 2015. https://doi.org/10.1155/2015/408643 48. M. Mehra, V. Farhad, and W. Robert, “A complete denture impression technique survey of postdoctoral prosthodontic programs in the United States,” Journal of Prosthodontics, vol.23, pp. 320–327, 2014. 49. Peñate González L. Estudio in vitro de la adaptación marginal, la resistencia compresiva y la estabilidad del color de materiales para restauraciones provisionales CAD-CAM comparados con diferentes materiales de provisionalización para técnica directa.[Tesis doctoral]. 2016. 50. Komine, F., Honda, J., Kusaba, K., Kubochi, K., Takata, H., & Fujisawa, M. (2020). Clinical outcomes of single crown restorations fabricated with resin-based CAD/CAM materials. Journal of Oral Science, 20-0195. 51. Caparroso Pérez Carlos, Duque Vargas Jaiver Andrés. Cerámicas y sistemas para restauraciones CAD-CAM: una revisión. Rev Fac Odontol Univ Antioq [Internet]. 2010 Dec [cited 2020 Dec 13] ; 22( 1 ): 88-108. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121- 246X2010000200011&lng=en 52. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/ CAM applications. J Dent Res. 2014;93:1232-4. 53. Reeponmaha, T, Angwaravong, O, Angwarawong, T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. The Journal of Advanced Prosthodontics, 2020; 12(4), 218. 54. Reed, J. S., Principles of Ceramics Processing. New York: John Wiley, 1995.p650 55. Chang M, Hung C, Chen W, Tseng S, Chen Y, Wang J. Effects of pontic spanand fiber reinforcement on fracture strength of multi-unit provisional fixed partial dentures. J. Dent. Sci. 2019, 14, 309–317. 56. Ladizesky N, Cheng Y, Chow T, Ward I. Acrylic resin reinforced with chopped high performance polyethylene fiber-properties and denture construction. Dent. Mater. 1993, 9, 128–135. 57. Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel). 2020 Oct 8;12(10):2299. doi: 10.3390/polym12102299. PMID: 33049984; PMCID: PMC7599472. 58. Faot F, Costa MA, Del Bel Cury AA, Rodrigues Garcia RC. Impact strength and fracture morphology of denture acrylic resins. J Prosthet Dent 2006;96:367-73. 59. Praveen B, Babaji HV, Prasanna BG, Rajalbandi SK, Shreeharsha TV, Prashant GM. Comparison of impact strength and fracture morphology of different heat cure denture acrylic resins: An in vitro study. J Int Oral Health 2014;6:12-6. 60. Asar NV, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5:241-7. 61. Darbar UR, Huggett R, Harrison A. Denture fracture – A survey. Br Dent J 1994;176:342-5 62. Agha H, Flinton R, Vaidyanathan T. Optimization of fracture resistance and stiffness of heat-polymerized high impact acrylic resin with localized E-glass fiBER FORCE® reinforcement at different stress points. J Prosthodont 2016;25:647-55 63. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 2004;91:274-80. 64. Smith DC. Acrylic denture. Mechanical evaluation; mid-line fracture. Br Dent J 1961;110:257-67. 65. Vallittu PK. A review of fiber-reinforced denture base resins. J Prosthod 1996;5:270-6 66. Uzun G, Hersek N, Tinçer T. Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 1999;81:616-20. 67. Somani MV, Khandelwal M, Punia V, Sharma V. The effect of incorporating variousreinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis. J Indian Prosthodont Soc. 2019 Apr Jun;19(2):101-112. doi: 10.4103/jips.jips_313_18. PMID: 31040543; PMCID: PMC6482623. 68. Tandon, R.; Gupta, S.; Agarwal, S.K. Denture base materials: From past to future. Indian J. Dent. Sci. 2010, 2, 33–39. 69. Alla R, Raghavendra K, Vyas R, Konakanchi A. Conventional and contemporary polymers for the fabrication of denture prosthesis: Part I–overview, composition and properties. Int. J. Appl. Dent. Sci. 2015, 1, 82. 70. Van Noort R. The future of dental devices is digital. Dent Mater. 2012 Jan;28(1):3- 12. doi: 10.1016/j.dental.2011.10.014. Epub 2011 Nov 26. PMID: 22119539. 71. Frazer RQ, Byron RT, Osborne PB, West KP. PMMA: An essential materialin medicine and dentistry. J. Long. Term. Eff. Med. 2005, 15, 629–639. 72. Bahrani F, Safari A, Vojdani M, Karampoor G, Patil S. Comparison of hardnessand surface roughness of two denture bases polymerized by different methods. World J. Dent. 2012, 3, 171–175. 73. Haas S, Brauer G, Dickson G.A characterization of polymethylmethacrylate bone cement. J. Bone Jt. Surg. 1975, 57, 380–391. [CrossRef] 74. Alqahtani, M. Effect of hexagonal boron nitride nanopowder reinforcement and mixing methods on physical and mechanical properties of self-cured PMMA for dental applications. Materials 2020, 13, 2323. 75. P.S. Goh, A.F. Ismail, B.C. Ng.Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances, Composites Part A: Applied Science and Manufacturing, Volume 56,2014,Pages 103-126, ISSN https://org/10.1016/j.co/science/article/pii/s 76. Guo W, Liu C, Sun X, Yang Z, Kia HG, Peng H. Aligned carbon nanotube/ polymer composite fibers with improved mechanical strength and electrical conductivity. J Mater Chem 2012;22:903–8. 77. Somani MV, Khandelwal M, Punia V, Sharma V. The effect of incorporating various reinforcement materials on flexural strength and impact strength of polymethylmethacrylate: A meta-analysis. J Indian Prosthodont Soc. 2019 Apr Jun;19(2):101-112. doi: 10.4103/jips.jips_313_18. PMID: 31040543; PMCID: PMC6482623. 78. Qasim, Saadi & Al, Khuraif & Kumar, Ravi. (2012). , An investigation into the impact and flexural strength of light cure denture resin reinforced with carbon nanotubes. World Applied Science Journal. 18. 808-812. 10.5829/idosi.wasj.2012.18.06.942. 79. Song Z, Hou X, Zhang L, Wu S. Enhancing crystallinity and orientation by hot stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposite. Materials 2011;4:621–32. 80. Thostenson ET, Chou TW. Nanotube bucking in aligned multi-wall carbon nanotube composites. Carbon 2004;42:3003–42. 81. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, RodriguezMacias FJ et al. Large-scale purification of single-wall carbon nanotubes: Process, product and characterization. Applied Physics A 1998;67(1):29–37. 82. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998;282:1105–7 83. Bower C, Zhou O, Zhu W, Werder DJ, Jin S. Nucleation and growth of carbon nanotubes by microwave plasma enhanced chemical vapor deposition. Applied Physics Letters 2000;77(17): 2767–9 84. Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear range. Physical Review Letters 1996;76(14):2511–4. 85. Collins PG, Avouris P. Nanotubes for electronics. Scientific American 2000;283(6):62–9. 86. Kim SH, Watts DC. The effect of reinforcement with woven E glass fibers on the impact strength of complete dentures fabricated with high impact acrylic resin. J Prosthet Dent 2004;91:274 80. 87. Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges.Nanomedicine. 2011; 6(2): 317-324. 88. Salavagione HJ, Martínez G, Ellis G. Graphene-based polymer nanocomposites. En: Mikhailov S, editor. Physics and Applications of Graphene –Experiments. InTech; 2011.169-192. 89. Pyrograf Products Inc. A comparison of carbon nanotubes and carbon nanofibers [sede web].Ohio: Pyrograf Products Inc. [acceso 6 de Agosto de 2015]. Disponible en:http://pyrografproducts.com/Merchant5/merchant.mvc?Screen=carbon_nanotubes_ vs_carbon_nanofibers. 90. Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nanotube polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent. 2014 Apr;111(4):318-26. doi: 10.1016/j.prosdent.2013.07.017. Epub 2013 Dec 18. PMID: 24360009. 91. Mahmood, W.S. The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high impact denture base material. J. Baghdad Coll. Dent. 2015, 27, 96–99. 92. Lee, Jung-Hwan, Jo, Jeong-Ki & Kim, Dong-Ae & Patel, Kapil & Kim, Hae-Won & Lee, Hae-Hyoung. (2018). Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dental Materials. 34. 10.1016/j.dental.2018.01.019. 93. Lee, Jung-Hwan & Jo, Jeong-Ki & Kim, Dong-Ae & Patel, Kapil & Kim, Hae-Won & Lee, Hae-Hyoung. (2018). Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dental Materials. 34. 10.1016/j.dental.2018.01.019. 94. Leão RS, Moraes SLD, Gomes JML, Lemos CAA, Casado BGDS, Vasconcelos BCDE, Pellizzer EP. Influence of addition of zirconia on PMMA: A systematic review. Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110292. doi: 10.1016/j.msec.2019.110292. Epub 2019 Oct 8. PMID: 31753402. 95. Alqahtani, M. Mechanical properties enhancement of self-cured PMMA reinforced with zirconia and boron nitride nanopowders for high-performance dental materials. J. Mech. Behav. Biomed. Mater. 2020, 110, 103937. 96. Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel). 2020 Oct 8;12(10):2299. doi: 10.3390/polym12102299. PMID: 33049984; PMCID: PMC7599472. 97. McLean JW. The science and art of dental ceramics. Oper Dent 1991;16:149-56 98. Álvarez Fernández, M.Á., Peña López, José Miguel, González González, Ignacio Ramón, Olay García, María Sonsoles. “Características generales y propiedades de las cerámicas sin metal”. Revista del Ilustre Consejo General de Colegios de Odontólogos y Estomatólogos de España, vol. 8(5), pp. 525-546, 2003 99. Oram DA, Davies EH, Cruickshanks-Boyd DW. Fracture of ceramic and metalloceramic cylinders. J Prosthet Dent 1984;52(2):221-30 100. Philp GK, Brukl CE. Compressive strengths of conventional, twin foil, and all ceramic crowns. J Prosthet Dent 1984;52(2):215-20 101. Kelly JR, Nishimura J, Campbell SD. Ceramics in dentistry. Historical roots and current perspective. J Prosthet Dent 1996;75:18-32. 102. Suárez MJ, López Lozano JF, Salido MP, Serrano B. Coronas de recubrimiento totalmente cerámicas. Criterios de selección. Revista Europea de Odontoestomatología 1999;11:249-58 103. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004;92(5):491-5. 104. Rosentritt M, Behr M, Handel G. Fixed partial dentures: all-ceramics, fibre-reinforced composites and experimental systems. J Oral Rehabil 2003;30(9):873-7. 105. Derand T, Molin M, Kvam K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater 2005;21(12):1158-62 106. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2004;92(6):557-62. 107. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Meerbeek BV, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:327–37. 108. Alfawaz Y. Zirconia crown as single unit tooth restoration: a literature review. JCPD 2016;17:418–22 109. Denry I,Kelly R.State of the art of zirconia for dental applications. Dent Mater. 2008 Jan. 17;24:200–307. 110. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299–307 111. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Meerbeek BV, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:327–37. 112. Alfawaz Y. Zirconia crown as single unit tooth restoration: a literature review. JCPD 2016;17:418–22. 113. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011;22:2429–35. 114. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:419–24. 115. Stawarczyk B, Özcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CHF. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Invest 2013;17:269–74. 116. Kelly JR, Denry I. Stabilized zirconia as structure ceramic: an overview. Dent Mater 2008;24:289–98. 117. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: from veneered to monolithic. Part 1. Quintessence Int 2017;48:369–80. 118. Jerman E, Wiedenmann F, Eichberger M, Reichert A, Stawarczyk B. Effect of high-speed sintering on the flexural strength of hydrothermal and thermo-mechanically aged zirconia materials. Dent Mater. 2020 Sep;36(9):1144-1150. doi: 10.1016/j.dental.2020.05.013. Epub 2020 Jun 30. PMID: 32620333. 119. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic restaurations. 120. Lümkemann N, Stawarczyk B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored 3Y-TZP, 4Y-TZP and 5Y-TZP zirconia materials. JPD 2020. S0022-3913-6: 121. Zimmermann M, Ender A, Mehl A. Influence of fabrication and sintering procedures on the fracture load of monolithic zirconia crowns. Oper Dent 2020;45(2):219–26. 122. Amat NF, Muchtar A, Amril MS, Ghazali MJ, Yahaya N. Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia. J Mater Rese Technol 2019;8(1):1092–101 123. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17(1):269–74 124. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO.Comparison of the mechanical properties of translucentzirconia and lithium disilicate. J Prosthet Dent2018;120(1):132–7 125. Zeng K, Oden A, Rowcliffe D. Flexure tests on dental ceramics. Int J Prosthodont 1996;9(5):434-9. 126. Yoshinari M, Derand T. Fracture strength of all-ceramic crowns. Int J Prosthodont 1994;7(4):329-38. 127. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74(6):1253-8. 128. Oh W, Gotzen N, Anusavice KJ. Influence of connector design on fracture probability of ceramic fixed-partial dentures. J Dent Res 2002;81(9):623-7 129. Taskonak B, Mecholsky JJ, Jr., Anusavice KJ. Fracture surface analysis of clinically failed fixed partial dentures. J Dent Res 2006;85(3):277-81. 130. Taskonak B, Yan J, Mecholsky JJ, Jr., Sertgoz A, Kocak A. Fractographic analyses of zirconia-based fixed partial dentures. Dent Mater 2008;24(8):1077-82. 131. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21(5):476-82. 132. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater 2007;23(1):106- 14. 133. Larsson C, Holm L, Lovgren N, Kokubo Y, Vult von Steyern P. Fracture strength of fourunit Y-TZP FPD cores designed with varying connector diameter. An in-vitro study. J Oral Rehabil 2007;34(9):702-9. 134. Villegas Giraldo, A., Borja Santamaria, A., “Efecto del almacenamiento de la barbotina sobre la resistencia a la flexión del In-Ceram alúmina” in Facultad de Odontología. Medellin: Instituto de Ciencias de la Salud, 2005, p. 38. 135. Anusavice, K.. “Cerámicas dentales”, in La ciencia de los materiales dentales de Phillips, Ed. México: M.- G.-H. Interamericana, 1998, p. 609-645. 136. Guzmán Báez, J.H. “Biomateriales odontológicos de uso clínico” in Cerámicas dentales, Ed. Bogotá: 2003, p. 390-341 137. Filser F, Kocher P, Weibel F, Luthy H, Scharer P, Gauckler LJ. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 2001;4(2):89-106. 138. Heydecke G, Butz F, Hussein A, Strub JR. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J Prosthet Dent 2002;87(4):438-45. 139. Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am 2004;48(2):viii, 531-44. 140. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2004;92(6):557-62.Ozcan 141. Ghazy MH, Madina MM. Fracture resistance of metal- and galvano-ceramic crowns cemented with different luting cements: in vitro comparative study. Int J Prosthodont 2006;19(6):610-2. 142. Schmitt y cols, publicaron una tas de supervivencia del 100% tras un periodo de seguimiento de 34 meses249. Resultado que concuerda con otros autores que proclaman el zirconio como material restaurador en sectores posteriores 250-252 143. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of coreveneer interface in bi-layered ceramics. J Prosthet Dent 2004;91(4):349-55.