Publication:
Flash-PEO coatings loaded with corrosion inhibitors on AA2024

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-08-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Flash plasma electrolytic oxidation (flash-PEO) with in situ incorporation of inhibitors is explored as a strategy for corrosion protection of 2024 aluminium (Al) alloys. Thin (~5 μm) and energy-efficient coatings were successfully developed on the Al substrate in 100 s treatment time using different electrolytes based on molybdate, stannate, tungstate, vanadate lanthanum or cerium salts additives with and without complexing agent (EDTA). Screening of the optimum combination in search of minimum thickness and best corrosion protective performance was performed using electrochemical impedance spectroscopy (EIS). Coatings based on EDTA-Ce and WO42 were selected and investigated further in comparison with the inhibitor-free phosphate coating in terms of morphology, composition, corrosion behaviour and paint adhesion. EDTA-Ce coating showed excellent paint adhesion and the highest impedance modulus at short immersion times in 3.5 wt% NaCl aqueous solution. Neutral salt spray testing of this coating as a full system comprising an epoxy primer showed no signs of corrosion after 1000 h of exposure.
Description
Keywords
Citation
F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys Trans. Inst. Met. Finish., 87 (2009), pp. 122-135 View Record in ScopusGoogle Scholar [2] L. Famiyeh, X. Huang Improving Corrosion Resistance and Mechanical Properties of Aluminum and its Alloys Via Plasma Electrolytic Oxidation for Aerospace Applications: A Review (2018) Google Scholar [3] D. Salehi Doolabi, M. Ehteshamzadeh, S.M.M. Mirhosseini Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum J. Mater. Eng. Perform., 21 (2012), pp. 2195-2202 View PDFCrossRefGoogle Scholar [4] Y. Cheng, J. Cao, M. Mao, H. Xie, P. Skeldon Key factors determining the development of two morphologies of plasma electrolytic coatings on an Al-Cu-Li alloy in aluminate electrolytes Surf. Coat. Technol., 291 (2016), pp. 239-249 ArticleDownload PDFView Record in ScopusGoogle Scholar [5] G.H. Lv, W.C. Gu, H. Chen, L. Li, E.W. Niu, S.Z. Yang Microstructure and corrosion performance of oxide coatings on aluminium by plasma electrolytic oxidation in silicate and phosphate electrolytes Chin. Phys. Lett., 23 (2006), pp. 3331-3333 View Record in ScopusGoogle Scholar [6] R. Arrabal, M. Mohedano, E. Matykina, A. Pardo, B. Mingo, M.C. Merino Characterization and wear behaviour of PEO coatings on 6082-T6 aluminium alloy with incorporated α-Al2O3 particles Surf. Coat. Technol., 269 (2015), pp. 64-73 ArticleDownload PDFView Record in ScopusGoogle Scholar [7] E. Matykina, R. Arrabal, M. Mohedano, B. Mingo, J. Gonzalez, A. Pardo, M.C. Merino Recent advances in energy efficient PEO processing of aluminium alloys Trans. Nonferrous Metals Soc. China, 27 (2017), pp. 1439-1454 ArticleDownload PDFView Record in ScopusGoogle Scholar [8] R. del Olmo, M. Mohedano, B. Mingo, R. Arrabal, E. Matykina LDH post-treatment of flash PEO coatings Coatings, 9 (2019) Google Scholar [9] G. Wei-Chao, L. Guo-Hua, C. Huan, C. Guang-Liang, F. Wen-Ran, Z. Gu-Ling, Y. Si-Ze Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH J. Mater. Process. Technol., 182 (2007), pp. 28-33 ArticleDownload PDFView Record in ScopusGoogle Scholar [10] M. Kaseem, M.P. Kamil, Y.G. Ko Electrochemical response of MoO2-Al2O3 oxide films via plasma electrolytic oxidation Surf. Coat. Technol., 322 (2017), pp. 163-173 ArticleDownload PDFView Record in ScopusGoogle Scholar [11] L. Wen, Y. Wang, Y. Zhou, J.-H. Ouyang, L. Guo, D. Jia Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy Corros. Sci., 52 (2010), pp. 2687-2696 ArticleDownload PDFView Record in ScopusGoogle Scholar [12] W. Yang, B.-l. Jiang, H.-y. Shi, L.-y. Xian Effects of KMnO4 on microstructure and corrosion resistance of microarc oxidation coatings on 2024 aluminum alloy J. Cent. S. Univ. Technol., 17 (2010), pp. 223-227 View PDFCrossRefView Record in ScopusGoogle Scholar [13] M. Mohedano, E. Matykina, R. Arrabal, B. Mingo, A. Pardo PEO of pre-anodized Al–Si alloys: corrosion properties and influence of sealings Appl. Surf. Sci., 346 (2015), pp. 57-67 ArticleDownload PDFView Record in ScopusGoogle Scholar [14] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González Energy-efficient PEO process of aluminium alloys Mater. Lett., 127 (2014), pp. 13-16 ArticleDownload PDFView Record in ScopusGoogle Scholar [15] T.W. Clyne, S.C. Troughton A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals Int. Mater. Rev., 64 (2019), pp. 127-162 View PDFCrossRefView Record in ScopusGoogle Scholar [16] X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zheludkevich Plasma electrolytic oxidation coatings with particle additions — a review Surf. Coat. Technol., 307 (2016), pp. 1165-1182 ArticleDownload PDFView Record in ScopusGoogle Scholar [17] A. Hakimizad, K. Raeissi, M. Santamaria, M. Asghari Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: from unipolar to soft-sparking regime Electrochim. Acta, 284 (2018), pp. 618-629 ArticleDownload PDFView Record in ScopusGoogle Scholar [18] S. Shrestha, A. Merstallinger, D. Sickert, B. Dunn Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications Eur. Space Agency Spec. Publ., 540 (2003), pp. 57-65 Google Scholar [19] H.Y. Zheng, Y.K. Wang, B.S. Li, G.R. Han The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy Mater. Lett., 59 (2005), pp. 139-142 ArticleDownload PDFGoogle Scholar [20] M. Kaseem, M.P. Kamil, J.H. Kwon, Y.G. Ko Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation Surf. Coat. Technol., 283 (2015), pp. 268-273 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] P. Visser, H. Terryn, J.M.C. Mol Aerospace coatings Springer Series in Materials Science (2016), pp. 315-372 View PDFCrossRefView Record in ScopusGoogle Scholar [22] R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano, E. Matykina Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy Surf. Coat. Technol., 206 (2012), pp. 4692-4703 ArticleDownload PDFView Record in ScopusGoogle Scholar [23] K. Al-Dalama, B. Aravind, A. Stanislaus Influence of complexing agents on the adsorption of molybdate and nickel ions on alumina Appl. Catal. A Gen., 296 (2005), pp. 49-53 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] D. Perry Handbook of Inorganic Compounds (2011) Google Scholar [25] S. Stojadinovic, R. Vasilic, I. Belca, M. Petkovic, B. Kasalica, Z. Nedic, L. Zekovic Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate Corros. Sci., 52 (2010), pp. 3258-3265 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] S. Zein El Abedin Role of chromate, molybdate and tungstate anions on the inhibition of aluminiumin chloride solutions J. Appl. Electrochem., 31 (2001), pp. 711-718 Google Scholar [27] D.S. Kharitonov, I. Dobryden, B. Sefer, J. Ryl, A. Wrzesińska, I.V. Makarova, I. Bobowska, I.I. Kurilo, P.M. Claesson Surface and corrosion properties of AA6063-T5 aluminum alloy in molybdate-containing sodium chloride solutions Corros. Sci., 171 (2020), Article 108658 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] M.A. Jakab, F. Presuel, J. Scully Critical concentrations associated with cobalt, cerium, and molybdenum inhibition of AA2024-T3 corrosion: delivery from Al-Co-Ce(Mo) alloys March 2005 Corrosion, 61 (2005) Google Scholar [29] D. Kharitonov, I. Kurilo, A. Wrzesińska, I.M. Zharskii Corrosion inhibition of AA6063 alloy by vanadates in alkaline media Mater. Werkst., 48 (2017), pp. 646-660 View PDFCrossRefView Record in ScopusGoogle Scholar [30] C. Vargel Chapter F.1 — protection of aluminium C. Vargel (Ed.), Corrosion of Aluminium (Second edition), Elsevier, Amsterdam (2020), pp. 383-443 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] S. Ofoegbu, F. Fernandes, A. Pereira The sealing step in aluminum anodizing: a focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance Coatings, 10 (2020), p. 226 View PDFCrossRefView Record in ScopusGoogle Scholar [32] X.X. Zeng, J.M. Wang, Q.L. Wang, D.S. Kong, H.B. Shao, J.Q. Zhang, C.N. Cao The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in an alkaline methanol–water solution Mater. Chem. Phys., 121 (2010), pp. 459-464 ArticleDownload PDFView Record in ScopusGoogle Scholar [33] X. Chang, J. Wang, H. Shao, J. Wang, X. Zeng, J. Zhang, C. Cao Corrosion and anodic behaviors of pure aluminum in a novel alkaline electrolyte Acta Phys. -Chim. Sin., 24 (2008), pp. 1620-1624 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [34] M.P. Kamil, M. Kaseem, Y. Ko Soft plasma electrolysis with complex ions for optimizing electrochemical performance Sci. Rep., 7 (2017) Google Scholar [35] A.B. Rogov Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with EDTA4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions Mater. Chem. Phys., 167 (2015), pp. 136-144 ArticleDownload PDFView Record in ScopusGoogle Scholar [36] B.R.W. Hinton Chapter 140 Corrosion prevention and control Handbook on the Physics and Chemistry of Rare Earths, Elsevier (1995), pp. 29-92 ArticleDownload PDFView Record in ScopusGoogle Scholar [37] P. Wang, T. Wu, Y. Xiao, J. Pu, X. Guo Effects of Ce(SO4)2 concentration on the properties of micro-arc oxidation coatings on ZL108 aluminum alloys Mater. Lett., 182 (2016) Google Scholar [38] M. Toorani, M. Aliofkhazraei, A. Sabour Rouhaghdam Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy Surf. Coat. Technol., 352 (2018), pp. 561-580 ArticleDownload PDFView Record in ScopusGoogle Scholar [39] L. Wang, L. Chen, Z. Yan, W. Fu Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes Surf. Coat. Technol., 205 (2010), pp. 1651-1658 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] X. Liu, K. Wang, Y. Zhou, X. Zhang, X. Tang, P. Ren, X. Jiang, B. Liu In-situ fabrication of Ce-rich CeO2 nanocatalyst for efficient CO oxidation J. Alloys Compd., 792 (2019), pp. 644-651 ArticleDownload PDFView Record in ScopusGoogle Scholar [41] A.L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process Surf. Coat. Technol., 199 (2005), pp. 150-157 ArticleDownload PDFView Record in ScopusGoogle Scholar [42] K. Du, X. Guo, Q. Guo, Y. Wang, F. Wang, Y. Tian Effect of PEO coating microstructure on corrosion of Al 2024 J. Electrochem. Soc., 159 (2012), pp. C597-C606 View PDFCrossRefView Record in ScopusGoogle Scholar [43] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey Plasma electrolysis for surface engineering Surf. Coat. Technol., 122 (1999), pp. 73-93 ArticleDownload PDFGoogle Scholar [44] Z. Zhu, W. Tu, Y. Cheng, Y. Cheng The formation of metallic W and amorphous phase in the plasma electrolytic oxidation coatings on an Al alloy from tungstate-containing electrolyte Surf. Coat. Technol., 361 (2019), pp. 176-187 ArticleDownload PDFView Record in ScopusGoogle Scholar [45] J. Jovović, S. Stojadinović, N.M. Šišović, N. Konjević Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium Surf. Coat. Technol., 206 (2011), pp. 24-28 ArticleDownload PDFView Record in ScopusGoogle Scholar [46] J.H. Lee, S.J. Kim Enhancement of wettability by wet surface modification and application of rare-earth element in sealing of ceramic oxide thin film on Al alloy J. Nanosci. Nanotechnol., 16 (2016), pp. 11797-11801 View PDFCrossRefView Record in ScopusGoogle Scholar [47] K. Czelej, M. Zemła, P. Spiewak, T. Wejrzanowski, K.J. Kurzydłowski Atomic-scale computational design of hydrophobic RE surface-doped Al2O3 and TiO2 Phys. Chem. Chem. Phys., 19 (2017), pp. 21119-21126 View PDFCrossRefView Record in ScopusGoogle Scholar [48] M. Mohedano, M. Serdechnova, M. Starykevich, S. Karpushenkov, A.C. Bouali, M.G.S. Ferreira, M.L. Zheludkevich Active protective PEO coatings on AA2024: role of voltage on in-situ LDH growth Mater. Des., 120 (2017), pp. 36-46 ArticleDownload PDFView Record in ScopusGoogle Scholar [49] N. Xiang, R. Song, C. Wang, Q. Mao, Y. Ge, J. Ding Formation of corrosion resistant plasma electrolytic oxidation coatings on aluminium alloy with addition of sodium tungstate species Corros. Eng. Sci. Technol., 51 (2015) (1743278215Y.1743278000) Google Scholar [50] D. Shen, H. Ma, C. Guo, J. Cai, G. Li, D. He, Q. Yang Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy J. Rare Earths, 31 (2013), pp. 1208-1213 ArticleDownload PDFView Record in ScopusGoogle Scholar [51] M. Serdechnova, M. Mohedano, A. Bouali, D. Hoeche, B. Kuznetsov, S. Karpushenkov, C. Blawert, M.L. Zheludkevich Role of phase composition of PEO coatings on AA2024 for in-situ LDH growth Coatings, 7 (2017), p. 190 View PDFCrossRefView Record in ScopusGoogle Scholar [52] A. Fattah-alhosseini, S.O. Gashti, M. Molaie Effects of disodium phosphate concentration (Na2HPO4·2H2O) on microstructure and corrosion resistance of plasma electrolytic oxidation (PEO) coatings on 2024 Al alloy J. Mater. Eng. Perform., 27 (2018), pp. 825-834 View PDFCrossRefView Record in ScopusGoogle Scholar [53] A. T, R.K. L, A. S, U.R. R, R. N Fabrication of multifunctional black PEO coatings on AA7075 for spacecraft applications Surf. Coat. Technol., 307 (2016), pp. 735-746 ArticleDownload PDFGoogle Scholar [54] J. Bajat, R. Vasilic, S. Stojadinović, V. Mišković-Stanković Corrosion Stability of Oxide Coatings Formed by Plasma Electrolytic Oxidation of Aluminum: Optimization of Process Time, Corrosion Houston TX (2013) Google Scholar [55] K.A. Yasakau, M.L. Zheludkevich, M.G.S. Ferreira Lanthanide salts as corrosion inhibitors for AA5083. Mechanism and efficiency of corrosion inhibition J. Electrochem. Soc., 155 (2008), p. C169 View PDFCrossRefView Record in ScopusGoogle Scholar [56] R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano, E. Matykina Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy Surf. Coat. Technol., 206 (2012), pp. 4692-4703 ArticleDownload PDFView Record in ScopusGoogle Scholar [57] H. Sharifi, M. Aliofkhazraei, G. Darband, S. Shrestha A review on adhesion strength of PEO coatings by scratch test method Surf. Rev. Lett., 25 (2017), p. 1830004, 10.1142/S0218625X18300046 (24 pages) View PDFGoogle Scholar [58] Method for producing a hard coating with high corrosion resitance on articles made of anodizable metals or alloys WO2006007972 (2006) Google Scholar [59] M.G. Rubio Optimisation of a Non-chromium-Containing Tartaric Acid/Sulphuric Acid Anodising Bath for Aluminium Alloys for Aerospace Industry Application Universidad autónoma de Madrid (2009) Google Scholar [60] S.N. Martin Beneke, Chromate free surface pre-treatments for aluminium alloys, in: ASETSDefense (Ed.), AIRBUS. Google Scholar
Collections