Publication:
Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations

Research Projects
Organizational Units
Journal Issue
Abstract
The plasma electrolytic oxidation is an innovative method for the surface treatment of titanium and its alloys. This review provides an overview of the historical development of the process and summarizes the current state of the art. The chemical as well as the electro- and plasma-chemical basics of the layer forming mechanisms, which comprises the substrate/electrolyte interface before discharge initiation and the different types and stages of plasma electrolytic discharge phenomena are explained within the context of titanium-based materials. How these phenomena can be influenced by the use of suitable electrolytes and controlled by the electrical regime is described. Subsequently, the microstructures and composition of the layers are described in detail, and the properties for specific applications are then discussed. The resistance of a PEO coating to corrosive environments, tribological factors, and alternating mechanical stress is viewed critically, and the extensive functional properties such as physiological compatibility, photocatalytic activity, and decorative properties are revealed. Finally, examples of various practical applications in the medical engineering, aviation, automotive, and environmental technology fields, as well as other branches of industry, are presented.
Description
Keywords
Citation
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia Ti based biomaterials, the ultimate choice for orthopaedic implants - A review Prog. Mater Sci., 54 (2009), pp. 397-425 Google Scholar [2] U. Diebold The surface science of titanium dioxide Surf. Sci. Rep., 48 (2003), pp. 53-229 Google Scholar [3] K. Sarakinos, J. Alami, S. Konstantinidis High power pulsed magnetron sputtering: a review on scientific and engineering state of the art Surf. Coat. Technol., 204 (2010), pp. 1661-1684 Google Scholar [4] K.L. Choy Chemical vapour deposition of coatings Prog. Mater Sci., 48 (2003), pp. 57-170 View PDFView Record in ScopusGoogle Scholar [5] J. Wang, H. Fan, H. Zhang, Q. Chen, Y. Liu, W. Ma Anodizing process of titanium and formation mechanism of anodic TiO2 nanotubes Progr. Chem., 28 (2016), pp. 284-295 View PDFCrossRefGoogle Scholar [6] N. Xiang, R.G. Song, B. Xiang, H. Li, Z.X. Wang, C. Wang A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films Appl. Surf. Sci., 347 (2015), pp. 454-460 View PDFView Record in ScopusGoogle Scholar [7] H. Fakhr Nabavi, M. Aliofkhazraei Morphology, composition and electrochemical properties of bioactive-TiO2/HA on cp-Ti and Ti6Al4V substrates fabricated by alkali treatment of hybrid plasma electrolytic oxidation process (estimation of porosity from EIS results) Surf. Coat. Technol., 375 (2019), pp. 266-291 View PDFView Record in ScopusGoogle Scholar [8] P. Pesode, S. Barve Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: a review Mater. Today: Proc. (2020) Google Scholar [9] M. Molaei, M. Nouri, K. Babaei, A. Fattah-Alhosseini Improving surface features of PEO Coatings on Titanium and Titanium Alloys with Zirconia Particles: A Review Surfaces and Interfaces (2020), Article 100888 Google Scholar [10] J.D.C. Tardelli, C. Bolfarini, A.C. Dos Reis Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: a systematic review J. Trace Elem. Med. Biol. (2020), Article 126618 Google Scholar [11] A. Fattah-alhosseini, M. Molaei, K. Babaei The effects of nano-and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: a review Surfaces and Interfaces, 21 (2020), Article 100659 View PDFView Record in ScopusGoogle Scholar [12] A. Fattah-alhosseini, M. Molaei, N. Attarzadeh, K. Babaei, F. Attarzadeh On the enhanced antibacterial activity of Plasma Electrolytic Oxidation (PEO) coatings that incorporate particles: a review Ceram. Int. (2020) Google Scholar [13] N.P. Sluginov Electric discharges in water J. Russ. Phys. Chem. Soc., 12 (1880) Google Scholar [14] A. Günterschultze, H. Betz Electrolytkondensatoren, Krayn, Berlin (1937) Google Scholar [15] S. Ikonopisov Problems and contradictions in galvanoluminescence, a critical review Electrochim. Acta, 20 (1975), pp. 783-793 View Record in ScopusGoogle Scholar [16] H.H. Kellogg Anode Effect in Aqueous Electrolysis J. Electrochem. Soc., 97 (1950), p. 133 View PDFCrossRefGoogle Scholar [17] A.A. Petrosyanis, V.N. Malyshev, V.A. Fedorov, G.A. Markov Wear kinetics of coatings made by microarcing oxidation Trenie & Iznos, 5 (1984), pp. 350-354 View Record in ScopusGoogle Scholar [18] V.V. Bakovets, O.V. Polyakov, I.P. Dolgovesova Plasma-electrolytic anodic processing of metals (in Russian) Nauka, Novosibirsk (1991) Google Scholar [19] M.M. Lohrengel Thin anodic oxide layers on aluminium and other valve metals: high field regime Mater. Sci. Eng.: R: Rep., 11 (1993), pp. 243-294 Google Scholar [20] A. Lugovskoy, M. Zinigrad Plasma electrolytic oxidation of valve metals Mater. Sci.-Adv. Topics (2013), pp. 85-102 View Record in ScopusGoogle Scholar [21] G. Marv, A. Bestanpouri, R. Droste, W. Erben, W. Schönemann, D. Wegen Investigation of the corrosion of valve metals and alloys under the influence of plutonium J. Less Common Metals, 121 (1986), pp. 507-513 View Record in ScopusGoogle Scholar [22] A.D. Modestov, A.D. Davydov Oxidizing valve metals: effect of electronic properties of the oxide films Russ. J. Electrochem., 36 (2000), pp. 1137-1143 View PDFView Record in ScopusGoogle Scholar [23] S. Farshid, M. Kharaziha Micro and nano-enabled approaches to improve the performance of plasma electrolytic oxidation coated magnesium alloys J. Magn. Alloys (2020) Google Scholar [24] M. Molaei, K. Babaei, A. Fattah-alhosseini Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: a review J. Magn. Alloys (2020) Google Scholar [25] M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance Prog. Mater Sci. (2020), Article 100735 Google Scholar [26] A. Fattah-alhosseini, R. Chaharmahali, K. Babaei Effect of particles addition to solution of Plasma Electrolytic Oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review J. Magn. Alloys, 8 (2020), pp. 799-818 View PDFView Record in ScopusGoogle Scholar [27] K. Babaei, A. Fattah-alhosseini, M. Molaei The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: a review Surfaces and Interfaces, 21 (2020), Article 100677 View PDFView Record in ScopusGoogle Scholar [28] V.S. Saji Superhydrophobic surfaces and coatings by electrochemical anodic oxidation and plasma electrolytic oxidation Adv. Colloid Interface Sci., 283 (2020), Article 102245 View PDFView Record in ScopusGoogle Scholar [29] A. Fattah-alhosseini, K. Babaei, M. Molaei Plasma Electrolytic Oxidation (PEO) treatment of zinc and its alloys: a review Surfaces and Interfaces, 18 (2020), Article 100441 View PDFView Record in ScopusGoogle Scholar [30] D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, A.S. Gnedenkov, V.M. Bouznik Composite coatings formed using plasma electrolytic oxidation and fluoroparaffin materials J. Alloys Compd., 767 (2018), pp. 353-360 View PDFView Record in ScopusGoogle Scholar [31] E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.J. Liang, A. Matthews Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling Surf. Coat. Technol., 269 (2015), pp. 2-22 View PDFView Record in ScopusGoogle Scholar [32] J. Marchenoir, J. Loup, J. Masson Étude des couches poreuses formées par oxydation anodique du titane sous fortes tensions Thin Solid Films, 66 (1980), pp. 357-369 View Record in ScopusGoogle Scholar [33] J. Schreckenbach, solid-state analytical characterization and possible uses of ANOF coatings on aluminum and titanium, doctoral thesis, university of chemnitz, (1987). Google Scholar [34] V.F. Bendikov, V.A. Fedorov, S.I. Sukhonos, O.I. Pushkarev, G.P. Zaitsev, B. Yu New methods for strengthening the friction surfaces of press rigging under abrasive wear conditions (1988), pp. 50-51 View Record in Scopus [35] H. Ishizawa, M. Ogino Formation and characterization of anodic titanium oxide films containing Ca and P J. Biomed. Mater. Res., 29 (1995), pp. 65-72 View PDFCrossRefView Record in ScopusGoogle Scholar [36] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey Plasma electrolysis for surface engineering Surf. Coat. Technol., 122 (1999), pp. 73-93 Google Scholar [37] J. Hall Properties of a new porous oxide surfase on titanium implants Appl. Osseointegr. Res., 1 (2000), pp. 5-8 View Record in ScopusGoogle Scholar [38] A. Yerokhin, X. Nie, A. Leyland, A. Matthews Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy Surf. Coat. Technol., 130 (2000), pp. 195-206 View PDFView Record in ScopusGoogle Scholar [39] A. Yerokhin, A. Leyland, A. Matthews Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation Appl. Surf. Sci., 200 (2002), pp. 172-184 View PDFView Record in ScopusGoogle Scholar [40] Y. Han, S.-H. Hong, K. Xu Porous nanocrystalline titania films by plasma electrolytic oxidation Surf. Coat. Technol., 154 (2002), pp. 314-318 View PDFView Record in ScopusGoogle Scholar [41] E. Sandrini, C. Morris, R. Chiesa, A. Cigada, M. Santin In vitro assessment of the osteointegrative potential of a novel multiphase anodic spark deposition coating for orthopaedic and dental implants J. Biomed. Mater. Res. Part B: Appl. Biomater.: Off. J. Soc. Biomater., Jpn. Soc. Biomater. Austr. Soc. Biomater. Korean Soc. Biomater., 73 (2005), pp. 392-399 View PDFCrossRefView Record in ScopusGoogle Scholar [42] P. Huang, F. Wang, K. Xu, Y. Han Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages Surf. Coat. Technol., 201 (2007), pp. 5168-5171 View PDFView Record in ScopusGoogle Scholar [43] E. Matykina, A. Berkani, P. Skeldon, G. Thompson Real-time imaging of coating growth during plasma electrolytic oxidation of titanium Electrochim. Acta, 53 (2007), pp. 1987-1994 View PDFView Record in ScopusGoogle Scholar [44] F. Walsh, C. Low, R. Wood, K. Stevens, J. Archer, A. Poeton, A. Ryder Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys Trans. IMF, 87 (2009), pp. 122-135 View Record in ScopusGoogle Scholar [45] M. Aliofkhazraei, A.S. Rouhaghdam, T. Shahrabi Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation Surf. Coat. Technol., 205 (2010), pp. S41-S46 View PDFView Record in ScopusGoogle Scholar [46] Z. Yao, F. Jia, S. Tian, C. Li, Z. Jiang, X. Bai Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation ACS Appl. Mater. Interfaces, 2 (2010), pp. 2617-2622 View PDFCrossRefView Record in ScopusGoogle Scholar [47] B. Necula, J. Van Leeuwen, L. Fratila-Apachitei, S. Zaat, I. Apachitei, J. Duszczyk In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts Acta Biomater., 8 (2012), pp. 4191-4197 View PDFView Record in ScopusGoogle Scholar [48] H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium Acta Biomater., 8 (2012), pp. 904-915 View PDFView Record in ScopusGoogle Scholar [49] R. Hussein, X. Nie, D. Northwood A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation Mater. Chem. Phys., 134 (2012), pp. 484-492 View PDFView Record in ScopusGoogle Scholar [50] S. Stojadinović, R. Vasilić, M. Petković, B. Kasalica, I. Belča, A. Žekić, L. Zeković Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate Appl. Surf. Sci., 265 (2013), pp. 226-233 View PDFView Record in ScopusGoogle Scholar [51] S. Durdu, Ö.F. Deniz, I. Kutbay, M. Usta Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation J. Alloys Compd., 551 (2013), pp. 422-429 View PDFView Record in ScopusGoogle Scholar [52] X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zheludkevich Plasma electrolytic oxidation coatings with particle additions–a review Surf. Coat. Technol., 307 (2016), pp. 1165-1182 View PDFView Record in ScopusGoogle Scholar [53] E. Erfanifar, M. Aliofkhazraei, H.F. Nabavi, A.S. Rouhaghdam Growth kinetics and morphology of microarc oxidation coating on titanium Surf. Coat. Technol., 315 (2017), pp. 567-576 View PDFView Record in ScopusGoogle Scholar [54] Y.L. Cheng, X.Q. Wu, Z.G. Xue, E. Matykina, P. Skeldon, G.E. Thompson Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti-6Al-4V alloy in silicate-hexametaphosphate electrolyte Surf. Coat. Technol., 217 (2013), pp. 129-139 View PDFView Record in ScopusGoogle Scholar [55] J. He, Q. Luo, Q.Z. Cai, X.W. Li, D.Q. Zhang Microstructure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation Mater. Chem. Phys., 129 (2011), pp. 242-248 View PDFView Record in ScopusGoogle Scholar [56] P. Huang, K.W. Xu, Y. Han Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application Mater. Lett., 59 (2005), pp. 185-189 View PDFView Record in ScopusGoogle Scholar [57] A. Lugovskoy, S. Lugovskoy Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys Mater. Sci. Eng.: C, 43 (2014), pp. 527-532 View PDFView Record in ScopusGoogle Scholar [58] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium Acta Biomater., 5 (2009), pp. 1356-1366 View PDFView Record in ScopusGoogle Scholar [59] J.M. Wheeler, C.A. Collier, J.M. Paillard, J.A. Curran Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V Surf. Coat. Technol., 204 (2010), pp. 3399-3409 View PDFView Record in ScopusGoogle Scholar [60] M. Khorasanian, A. Dehghan, M.H. Shariat, M.E. Bahrololoom, S. Javadpour Microstructure and wear resistance of oxide coatings on Ti-6Al-4V produced by plasma electrolytic oxidation in an inexpensive electrolyte Surf. Coat. Technol., 206 (2011), pp. 1495-1502 View PDFView Record in ScopusGoogle Scholar [61] Z. Yao, Y. Jiang, F. Jia, Z. Jiang, F. Wang Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6Al-4V alloy Appl. Surf. Sci., 254 (2008), pp. 4084-4091 View PDFView Record in ScopusGoogle Scholar [62] A. Mathis, E. Rocca, D. Veys-Renaux, J. Tardelli Electrochemical behaviour of titanium in KOH at high potential Electrochim. Acta, 202 (2016), pp. 253-261 View PDFView Record in ScopusGoogle Scholar [63] X. Zhang, G. Cai, Y. Lv, Y. Wu, Z. Dong Growth mechanism of titania on titanium substrate during the early stage of plasma electrolytic oxidation Surf. Coat. Technol., 400 (2020), Article 126202 View PDFView Record in ScopusGoogle Scholar [64] K. Venkateswarlu, N. Rameshbabu, S. Sreekanth, A.C. Bose, V. Muthupandi, N.K. Babu, S. Subramanian Role of electrolyte additives on in-vitro electrochemical behavior of micro arc oxidized titania films on Cp Ti Appl. Surf. Sci., 258 (2012), pp. 6853-6863 View PDFView Record in ScopusGoogle Scholar [65] M. Warczak, M. Pisarek, A. Sadkowski Instability of the anodic oxide layer on Ti as manifest by an anodic peak on the negatively directed branch of the cyclic voltammetry plot Corros. Sci., 89 (2014), pp. 6-12 View PDFView Record in ScopusGoogle Scholar [66] T.H. Teh, A. Berkani, S. Mato, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu Initial stages of plasma electrolytic oxidation of titanium Corros. Sci., 45 (2003), pp. 2757-2768 View PDFView Record in ScopusGoogle Scholar [67] M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, R. Molaei WO3)x-(TiO2)1-x nano-structured porous catalysts grown by micro-arc oxidation method: Characterization and formation mechanism Mater. Chem. Phys., 124 (2010), pp. 203-207 View PDFView Record in ScopusGoogle Scholar [68] S. Aliasghari, P. Skeleton, G.E. Thompson Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings Appl. Surf. Sci., 316 (2014), pp. 463-476 View PDFView Record in ScopusGoogle Scholar [69] J.M. Albella, I. Montero, J.M. Martinez-Duart A theory of avalanche breakdown during anodic oxidation Electrochim. Acta, 32 (1987), pp. 255-258 Google Scholar [70] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews Discharge characterization in plasma electrolytic oxidation of aluminium J. Phys. D Appl. Phys., 36 (2003), p. 2110 View Record in ScopusGoogle Scholar [71] X. Zhang, Z. Yao, Z. Jiang, Y. Zhang, X. Liu Investigation of the plasma electrolytic oxidation of Ti6Al4V under single-pulse power supply Corros. Sci., 53 (2011), pp. 2253-2262 View PDFView Record in ScopusGoogle Scholar [72] D. Quintero, O. Galvis, J.A. Calderón, M.A. Gómez, J.G. Castaño, F. Echeverría, H. Habazaki Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy Surf. Coat. Technol., 283 (2015), pp. 210-222 View PDFView Record in ScopusGoogle Scholar [73] G. He, L. Xie, G.F. Yin, X.M. Liao, Y.W. Zou, Z.B. Huang, Y.D. Yao, X.C. Chen, F.H. Wang Synthesis and mechanism of (101)-preferred orientation rutile titania via anodic spark oxidation Surf. Coat. Technol., 228 (2013), pp. 201-208 View PDFView Record in ScopusGoogle Scholar [74] W. Krysmann, P. Kurze, K.H. Dittrich, H. Schneider Process characteristics and parameters of anodic oxidation by spark discharge (ANOF) Cryst. Res. Technol., 19 (1984), pp. 973-979 View PDFCrossRefGoogle Scholar [75] S. Stojadinović, R. Vasilić, M. Petković, L. Zeković Plasma electrolytic oxidation of titanium in heteropolytungstate acids Surf. Coat. Technol., 206 (2011), pp. 575-581 View PDFView Record in ScopusGoogle Scholar [76] M.D. Klapkiv, H.M. Nykyforchyn, V.M. Posuvailo Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide Mater. Sci., 30 (1995), pp. 333-343 View Record in ScopusGoogle Scholar [77] R. Hussein, X. Nie, D. Northwood, A. Yerokhin, A. Matthews Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process J. Phys. D Appl. Phys., 43 (2010), Article 105203 View PDFCrossRefGoogle Scholar [78] V.S. Rudnev Micro- and nano-formations on the surface of plasma electrolytic oxide coatings on aluminum and titanium Surf. Coat. Technol., 235 (2013), pp. 134-143 View PDFView Record in ScopusGoogle Scholar [79] J. Zhou, Y. Han Effect of hydrothermal treatment model on the formation of Sr-HA nanorod arrays on microarc oxidized titania coatings Appl. Surf. Sci., 286 (2013), pp. 384-390 Google Scholar [80] V.S. Rudnev, S. Wybornov, I.V. Lukiyanchuk, I.V. Chernykh Growth of nanowires on the surfaces of multicomponent oxide coatings on titanium Protect. Metals Phys. Chem. Surfaces, 50 (2014), pp. 191-194 View Record in ScopusGoogle Scholar [81] S. Sarbishei, M.A. Faghihi Sani, M.R. Mohammadi Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process Ceram. Int., 42 (2016), pp. 8789-8797 View PDFView Record in ScopusGoogle Scholar [82] A. Krza̧kała, J. Młyński, G. Dercz, J. Michalska, A. Maciej, Ł. Nieuzyła, W. Simka Modification of Ti-6Al-4V alloy surface by epd-peo process in ZRSIO 4 suspension Arch. Metall. Mater., 59 (2014), pp. 199-204 View PDFCrossRefView Record in ScopusGoogle Scholar [83] D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes Mater. Sci. Eng.: R: Rep., 74 (2013), pp. 377-406 View PDFView Record in ScopusGoogle Scholar [84] J.S. Dhaliwal, N.A. Rahman, J. Knights, H. Ghani, R.F. de Albuquerque Junior The effect of different surface topographies of titanium implants on bacterial biofilm: a systematic review SN Appl. Sci., 1 (2019), p. 615 View PDFView Record in ScopusGoogle Scholar [85] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou A review on the visible light active titanium dioxide photocatalysts for environmental applications Appl. Catal. B, 125 (2012), pp. 331-349 View PDFView Record in ScopusGoogle Scholar [86] H. Chouirfa, H. Bouloussa, V. Migonney, C. Falentin-Daudré Review of titanium surface modification techniques and coatings for antibacterial applications Acta Biomater., 83 (2019), pp. 37-54 View PDFView Record in ScopusGoogle Scholar [87] S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlström, M.D. Rasmussen, P. Thostrup, L. Molina, E. Lægsgaard, I. Stensgaard Oxygen vacancies on TiO2 (1 1 0) and their interaction with H2O and O2: a combined high-resolution STM and DFT study Surf. Sci., 598 (2005), pp. 226-245 View PDFView Record in ScopusGoogle Scholar [88] K. Onda, B. Li, H. Petek Two-photon photoemission spectroscopy of TiO2 (110) surfaces modified by defects and O2 or H2O adsorbates Phys. Rev. B, 70 (2004), Article 045415 View Record in ScopusGoogle Scholar [89] R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface Science, 299 (2003), pp. 377-379 View Record in ScopusGoogle Scholar [90] D.D. Macdonald The point defect model for the passive state J. Electrochem. Soc., 139 (1992), pp. 3434-3449 View PDFCrossRefView Record in ScopusGoogle Scholar [91] C. Adán, J. Marugán, E. Sánchez, C. Pablos, R. Van Grieken Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes Electrochim. Acta, 191 (2016), pp. 521-529 View PDFView Record in ScopusGoogle Scholar [92] D.D. Macdonald PassivityÐthe key to our metals-based civilization Pure Appl. Chem., 71 (1999), pp. 951-978 View PDFCrossRefView Record in ScopusGoogle Scholar [93] D. Ellerbrock, D.D. Macdonald Passivity of titanium, part 1: film growth model diagnostics J. Solid State Electrochem., 18 (2014), pp. 1485-1493 View PDFCrossRefView Record in ScopusGoogle Scholar [94] B. Roh, D.D. Macdonald Passivity of titanium: part II, the defect structure of the anodic oxide film J. Solid State Electrochem., 23 (2019), pp. 1967-1979 View PDFCrossRefView Record in ScopusGoogle Scholar [95] B. Roh, D.D. Macdonald The passivity of titanium—part III: characterization of the anodic oxide film J. Solid State Electrochem., 23 (2019), pp. 2001-2008 View PDFCrossRefView Record in ScopusGoogle Scholar [96] B. Roh, D.D. Macdonald Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation J. Solid State Electrochem., 23 (2019), pp. 2863-2879 View PDFCrossRefView Record in ScopusGoogle Scholar [97] P. Kofstad Note on the defect structure of rutile (TiO2) J. Less Common Metals, 13 (1967), pp. 635-638 Google Scholar [98] J. Marsh, D. Gorse A photoelectrochemical and ac impedance study of anodic titanium oxide films Electrochim. Acta, 43 (1998), pp. 659-670 View PDFView Record in ScopusGoogle Scholar [99] J. Alexander Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting Springer (2016) Google Scholar [100] F. Cheng, G. Lin, X. Hu, S. Xi, K. Xie Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance Nat. Commun., 10 (2019), pp. 1-9 Google Scholar [101] W.J. Albery, G.J. O'Shea, A.L. Smith Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface J. Chem. Soc. Faraday Trans., 92 (1996), pp. 4083-4085 View Record in ScopusGoogle Scholar [102] E. Sikora, J. Sikora, D.D. Macdonald A new method for estimating the diffusivities of vacancies in passive films Electrochim. Acta, 41 (1996), pp. 783-789 View PDFView Record in ScopusGoogle Scholar [103] E. Verwey Electrolytic conduction of a solid insulator at high fields the formation of the anodic oxide film on aluminium Physica, 2 (1935), pp. 1059-1063 Google Scholar [104] N. Cabrera, N.F. Mott Theory of the oxidation of metals Rep. Prog. Phys., 12 (1949), pp. 163-184 View Record in ScopusGoogle Scholar [105] N. Sato, M. Cohen The kinetics of anodic oxidation of iron in neutral solution: I. steady growth region J. Electrochem. Soc., 111 (1964), p. 512 View PDFCrossRefView Record in ScopusGoogle Scholar [106] F. Mao, J. Yao, Y. Zhou, C. Dong, B. Kursten, D.D. Macdonald Determining the electric-field strength in a passive film via photo-induced electric fields Corros. Sci., 154 (2019), pp. 239-245 View PDFView Record in ScopusGoogle Scholar [107] H.-C. Wu, J. Jiang, E.I. Meletis Microstructure of BaCO3 and BaTiO3 coatings produced on titanium by plasma electrolytic oxidation Appl. Surf. Sci., 506 (2020), Article 144858 View PDFView Record in ScopusGoogle Scholar [108] M. Shokouhfar, C. Dehghanian, A. Baradaran Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance Appl. Surf. Sci., 257 (2011), pp. 2617-2624 View PDFView Record in ScopusGoogle Scholar [109] M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II Appl. Surf. Sci., 258 (2012), pp. 2416-2423 View PDFView Record in ScopusGoogle Scholar [110] H. Jiang, Z. Shao, B. Jing Effect of electrolyte composition on photocatalytic activity and corrosion resistance of micro-arc oxidation coating on pure titanium in Procedia Earth Planet. Sci. (2011), pp. 156-161 View PDFView Record in ScopusGoogle Scholar [111] Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, Z. Jiang Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation Surf. Coat. Technol., 307 (2016), pp. 1297-1302 View PDFView Record in ScopusGoogle Scholar [112] J. Li, L. Wan, J. Feng Micro arc oxidation of S-containing TiO2 films by sulfur bearing electrolytes J. Mater. Process. Technol., 209 (2009), pp. 762-766 View PDFView Record in ScopusGoogle Scholar [113] S. Aliasghari, A. Němcová, P. Skeldon, G.E. Thompson Influence of coating morphology on adhesive bonding of titanium pre-treated by plasma electrolytic oxidation Surf. Coat. Technol., 289 (2016), pp. 101-109 View PDFView Record in ScopusGoogle Scholar [114] M. Asadi, M. Attarchi, M. Vahidifar, A. Jafari Effect of SiO2- 3/OH- on plasma electrolytic oxidation of Ti-5Mo-4V-3Al Bull. Mater. Sci., 33 (2010), pp. 469-474 View PDFCrossRefView Record in ScopusGoogle Scholar [115] I. Han, J.H. Choi, B.H. Zhao, H.K. Baik, I.S. Lee Micro-arc oxidation in various concentration of KOH and structural change by different cut off potential Curr. Appl Phys., 7 (2007), pp. e23-e27 View PDFView Record in ScopusGoogle Scholar [116] M. Shi, H. Li A Mathematical interpretation model of Ti alloy Micro-Arc Oxidation (MAO) process and its experimental study Surf. Eng. Appl. Electrochem., 51 (2015), pp. 468-477 View Record in ScopusGoogle Scholar [117] M. Echeverry-Rendón, O. Galvis, D. Quintero Giraldo, J. Pavón, J.L. López-Lacomba, E. Jiménez-Piqué, M. Anglada, S.M. Robledo, J.G. Castaño, F. Echeverría Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces J. Mater. Sci. Mater. Med., 26 (2015), pp. 1-18 Google Scholar [118] M. Shi, H. Li The morphology, structure and composition of Microarc Oxidation (MAO) ceramic coating in Ca-P electrolyte with complexing agent EDTMPS and interpretation hypothesis of MAO process Surf. Eng. Appl. Electrochem., 52 (2016), pp. 32-42 View Record in ScopusGoogle Scholar [119] K.R. Shin, Y.G. Ko, D.H. Shin Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation J. Alloys Compd., 509 (2011), pp. S478-S481 View PDFView Record in ScopusGoogle Scholar [120] P. Kern, O. Zinger Purified titanium oxide with novel morphologies upon spark anodization of Ti alloys in mixed H2SO4/H3PO4 electrolytes J. Biomedi. Mater. Res. - Part A, 80 (2007), pp. 283-296 View PDFCrossRefView Record in ScopusGoogle Scholar [121] O.A. Galvis, D. Quintero, J.G. Castaño, H. Liu, G.E. Thompson, P. Skeldon, F. Echeverría Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bonding Surf. Coat. Technol., 269 (2015), pp. 238-249 View PDFView Record in ScopusGoogle Scholar [122] R. Ragalevičius, G. Stalnionis, G. Niaura, A. Jagminas Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt Appl. Surf. Sci., 254 (2008), pp. 1608-1613 View PDFView Record in ScopusGoogle Scholar [123] V.S. Rudnev, M.A. Medkov, I.V. Lukiyanchuk, N.I. Steblevskaya, K.N. Kilin, M.V. Belobeletskaya Ta-containing coatings formed on titanium and stainless steel by plasma electrolytic oxidation and/or extraction pyrolysis Surf. Coat. Technol., 258 (2014), pp. 1232-1238 View PDFView Record in ScopusGoogle Scholar [124] V.S. Rudnev, K.N. Kilin, M.A. Medkov, I.V. Lukiyanchuk, E.E. Dmitrieva Ta-containing oxide coatings on titanium for biomedical application Russ. J. Appl. Chem., 86 (2013), pp. 1340-1343 View Record in ScopusGoogle Scholar [125] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong Biomimetic apatite coatings on micro-arc oxidized titania Biomaterials, 25 (2004), pp. 3341-3349 View PDFView Record in ScopusGoogle Scholar [126] X. Yin, Y. Wang, B. Liu, X.B. Luo Effects of the grain boundary on phase structure and surface morphology of TiO2 films prepared by MAO technology Surf. Interface Anal., 44 (2012), pp. 276-281 View PDFCrossRefView Record in ScopusGoogle Scholar [127] I. Apachitei, A. Leoni, A.C. Riemslag, L.E. Fratila-Apachitei, J. Duszczyk Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy Appl. Surf. Sci., 257 (2011), pp. 6941-6944 View PDFView Record in ScopusGoogle Scholar [128] Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.J. Fecht Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation Acta Biomater., 6 (2010), pp. 2816-2825 View PDFView Record in ScopusGoogle Scholar [129] F. Reshadi, G. Faraji, M. Baniassadi, M. Tajeddini Surface modification of severe plastically deformed ultrafine grained pure titanium by plasma electrolytic oxidation Surf. Coat. Technol., 316 (2017), pp. 113-121 View PDFView Record in ScopusGoogle Scholar [130] H.Y. Wang, R.F. Zhu, Y.P. Lu, G.Y. Xiao, K. He, Y.F. Yuan, X.N. Ma, Y. Li Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique Appl. Surf. Sci., 292 (2014), pp. 204-212 Google Scholar [131] E. Peláez-Abellán, L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti Mater. Res., 15 (2012), pp. 159-165 View PDFCrossRefView Record in ScopusGoogle Scholar [132] W.F. Cui, L. Jin, L. Zhou Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy Mater. Sci. Eng. C, 33 (2013), pp. 3775-3779 View PDFView Record in ScopusGoogle Scholar [133] G.X. Tang, R.J. Zhang, Y.N. Yan, Z.X. Zhu Preparation of porous anatase titania film Mater. Lett., 58 (2004), pp. 1857-1860 View PDFView Record in ScopusGoogle Scholar [134] F. Deng, W. Zhang, P. Zhang, C. Liu, J. Ling Improvement in the morphology of micro-arc oxidised titanium surfaces: A new process to increase osteoblast response Mater. Sci. Eng. C, 30 (2010), pp. 141-147 View PDFView Record in ScopusGoogle Scholar [135] F. Samanipour, M.R. Bayati, F. Golestani-Fard, H.R. Zargar, T. Troczynski, A.R. Mirhabibi An innovative technique to simply fabricate ZrO2-HA-TiO2 nanostructured layers Colloids Surf. B, 86 (2011), pp. 14-20 View PDFView Record in ScopusGoogle Scholar [136] M.S. Vasilyeva, A.P. Artemyanov, V.S. Rudnev, N.B. Kondrikov The porous structure of silicon-containing surface layers formed on titanium by plasma-electrolytic oxidation Protect. Metals Physical Chem. Surf., 50 (2014), pp. 499-507 View Record in ScopusGoogle Scholar [137] J.H. Wang, J. Wang, Y. Lu, M.H. Du, F.Z. Han Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy Appl. Surf. Sci., 324 (2015), pp. 405-413 Google Scholar [138] I. Han, J.H. Choi, B.H. Zhao, H.K. Baik, I.S. Lee Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform Surf. Coat. Technol., 201 (2007), pp. 5533-5536 View PDFView Record in ScopusGoogle Scholar [139] M. Aliofkhazraei, A.S. Rouhaghdam Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle Appl. Surf. Sci., 258 (2012), pp. 2093-2097 View PDFView Record in ScopusGoogle Scholar [140] C. Sun, R. Hui, W. Qu, S. Yick, C. Sun, W. Qian Effects of processing parameters on microstructures of TiO2 coatings formed on titanium by plasma electrolytic oxidation J. Mater. Sci., 45 (2010), pp. 6235-6241 View PDFCrossRefView Record in ScopusGoogle Scholar [141] Z. Yao, P. Su, Q. Shen, P. Ju, C. Wu, Y. Zhai, Z. Jiang Preparation of thermal control coatings on Ti alloy by plasma electrolytic oxidation in K2ZrF6 solution Surf. Coat. Technol., 269 (2015), pp. 273-278 View PDFView Record in ScopusGoogle Scholar [142] C.L. Chu, Z.H. Liu, X. Rao, Q. Sun, P.H. Lin, F. Chen, P.K. Chu Micro-nano hierarchical porous titania modified with ZnO nanorods for biomedical applications Surf. Coat. Technol., 232 (2013), pp. 68-74 Google Scholar [143] Z. Yao, Y. Liu, Y. Xu, Z. Jiang, F. Wang Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation Mater. Chem. Phys., 126 (2011), pp. 227-231 View PDFView Record in ScopusGoogle Scholar [144] Y. Han, J. Zhou, L. Zhang, K. Xu A multi-scaled hybrid orthopedic implant: Bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold Nanotechnology (2011), p. 22 View Record in ScopusGoogle Scholar [145] P.J. Chu, S.Y. Wu, K.C. Chen, J.L. He, A. Yerokhin, A. Matthews Nano-structured TiO2 films by plasma electrolytic oxidation combined with chemical and thermal post-treatments of titanium, for dye-sensitised solar cell applications Thin Solid Films, 519 (2010), pp. 1723-1728 View PDFView Record in ScopusGoogle Scholar [146] F. Ren, K. He, Y. Ling, J. Feng Novel fabrication of net-like and flake-like Fe doped TiO2 thin films Appl. Surf. Sci., 257 (2011), pp. 9621-9625 View PDFView Record in ScopusGoogle Scholar [147] W.C. Lo, H.J. Chu, J.L. He Micro- and nanomorphology coexisting in titanium dioxide coating for application as anode material in secondary lithium-ion batteries Thin Solid Films, 579 (2015), pp. 14-20 View PDFView Record in ScopusGoogle Scholar [148] Q. Huang, T.A. Elkhooly, X. Liu, R. Zhang, X. Yang, Z. Shen, Q. Feng Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells Colloids Surf. B, 145 (2016), pp. 37-45 View PDFView Record in ScopusGoogle Scholar [149] M. Kaseem, H.-C. Choe Simultaneous improvement of corrosion resistance and bioactivity of a titanium alloy via wet and dry plasma treatments J. Alloys Compd., 851 (2021), Article 156840 View PDFView Record in ScopusGoogle Scholar [150] M. Molaei, A. Fattah-Alhosseini, M.K. Keshavarz Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti J. Asian Ceram. Soc., 7 (2019), pp. 247-255 View PDFCrossRefView Record in ScopusGoogle Scholar [151] M. Molaei, A. Fattah-Alhosseini, S.O. Gashti Sodium aluminate concentration effects on microstructure and corrosion behavior of the plasma electrolytic oxidation coatings on pure titanium Metall. Mater. Trans. A, 49 (2018), pp. 368-375 View PDFCrossRefView Record in ScopusGoogle Scholar [152] W. Ping, W. Ting, P. Hao, G.X. Yang Effect of NaAlO2 concentrations on the properties of micro-arc oxidation coatings on pure titanium Mater. Lett., 170 (2016), pp. 171-174 View PDFView Record in ScopusGoogle Scholar [153] H. Wang, F. Liu, X. Xiong, S. Ke, X. Zeng, P. Lin Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation Appl. Surf. Sci., 356 (2015), pp. 1234-1243 View PDFView Record in ScopusGoogle Scholar [154] J. Baszkiewicz, D. Krupa, J. Mizera, J.W. Sobczak, A. Biliński Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment Vacuum, 78 (2005), pp. 143-147 View PDFView Record in ScopusGoogle Scholar [155] A. Kazek-Kesik, G. Dercz, K. Suchanek, I. Kalemba-Rec, J. Piotrowski, W. Simka Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part I Surf. Coat. Technol., 276 (2015), pp. 59-69 View PDFView Record in ScopusGoogle Scholar [156] D. Veys-Renaux, Z. Ait El Haj, E. Rocca Corrosion resistance in artificial saliva of titanium anodized by plasma electrolytic oxidation in Na3PO4 Surf. Coat. Technol., 285 (2016), pp. 214-219 View PDFView Record in ScopusGoogle Scholar [157] L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi Surface characterization of oxides grown on the Ti-13Nb-13Zr alloy and their corrosion protection Corros. Sci., 72 (2013), pp. 35-40 View PDFView Record in ScopusGoogle Scholar [158] J. Ai, Y. Chen, M. Urquidi-Macdonald, D.D. Macdonald Electrochemical impedance spectroscopic study of passive Zirconium J. Electrochem. Soc., 154 (2007), p. C43 View PDFCrossRefView Record in ScopusGoogle Scholar [159] J. Ai, Y. Chen, M. Urquidi-Macdonald, D.D. Macdonald Electrochemical impedance spectroscopic study of passive Zirconium J. Electrochem. Soc., 154 (2007), p. C52 View PDFCrossRefView Record in ScopusGoogle Scholar [160] D. Krupa, J. Baszkiewicz, J. Zdunek, J.W. Sobczak, W. Lisowski, J. Smolik, Z. Słomka Effect of plasma electrolytic oxidation in the solutions containing Ca, P, Si, Na on the properties of titanium J. Biomed. Mater. Res. B Appl. Biomater., 100 (2012), pp. 2156-2166 View PDFCrossRefView Record in ScopusGoogle Scholar [161] X. Shi, L. Xu, Q. Wang Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank's solution Surf. Coat. Technol., 205 (2010), pp. 1730-1735 View PDFView Record in ScopusGoogle Scholar [162] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte Russ. J. Appl. Chem., 83 (2010), pp. 664-670 View Record in ScopusGoogle Scholar [163] F.C. Ma, P. Liu, W. Li, X.K. Liu, X.H. Chen, L.H. Yang, J.M. Zhu Effect of process parameters on structure of coatings containing Ca and P on Ti alloy by micro-arc oxidation Cailiao Rechuli Xuebao/Trans. Mater. Heat Treat., 34 (2013), pp. 148-152 View Record in ScopusGoogle Scholar [164] C.A.H. Laurindo, R.D. Torres, S.A. Mali, J.L. Gilbert, P. Soares Incorporation of Ca and P on anodized titanium surface: effect of high current density Mater. Sci. Eng. C, 37 (2014), pp. 223-231 View PDFView Record in ScopusGoogle Scholar [165] Y. Vangolu, E. Arslan, Y. Totik, E. Demirci, A. Alsaran Optimization of the coating parameters for micro-arc oxidation of cp-Ti Surf. Coat. Technol., 205 (2010), pp. 1764-1773 View PDFView Record in ScopusGoogle Scholar [166] S. Gowtham, T. Arunnellaiappan, N. Rameshbabu An investigation on pulsed DC plasma electrolytic oxidation of cp-Ti and its corrosion behaviour in simulated body fluid Surf. Coat. Technol. (2016) Google Scholar [167] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani Effect of duty cycle and applied current frequency on Plasma Electrolytic Oxidation (PEO) coating growth behavior Surf. Coat. Technol., 226 (2013), pp. 100-107 View PDFView Record in ScopusGoogle Scholar [168] A.R. Rafieerad, M.R. Ashra, R. Mahmoodian, A.R. Bushroa Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper Mater. Sci. Eng. C, 57 (2015), pp. 397-413 View PDFView Record in ScopusGoogle Scholar [169] M. Montazeri, C. Dehghanian, M. Shokouhfar, A. Baradaran Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior Appl. Surf. Sci., 257 (2011), pp. 7268-7275 View PDFView Record in ScopusGoogle Scholar [170] W.Y. Tsai, C.J. Yang, J.L. Zeng, F.H. Lu Synthesis and characterization of barium titanate films on Ti-coated Si substrates by plasma electrolytic oxidation Surf. Coat. Technol., 259 (2014), pp. 297-301 View PDFView Record in ScopusGoogle Scholar [171] J. Peng, B. Han, W. Li, J. Du, P. Guo, D. Han Study on the microstructural evolution of BaTiO3 on titanium substrate during MAO Mater. Lett., 62 (2008), pp. 1801-1804 View PDFView Record in ScopusGoogle Scholar [172] C.T. Wu, F.H. Lu Corrosion resistance of BaTiO3 films prepared by plasma electrolytic oxidation Surf. Coat. Technol., 166 (2003), pp. 31-36 View PDFView Record in ScopusGoogle Scholar [173] J.Y. Jiang, J.L. Xu, Z.H. Liu, L. Deng, B. Sun, S.D. Liu, L. Wang, H.Y. Liu Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys Appl. Surf. Sci., 347 (2015), pp. 591-595 View PDFView Record in ScopusGoogle Scholar [174] Y.H. Wang, Z.G. Liu, J.H. Ouyang, Y.M. Wang, Y. Zhou Influence of electrolyte compositions on structure and high-temperature oxidation resistance of microarc oxidation coatings formed on Ti2AlNb alloy J. Alloys Compd., 647 (2015), pp. 431-437 View PDFView Record in ScopusGoogle Scholar [175] K.C. Kung, T.M. Lee, T.S. Lui Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation J. Alloys Compd., 508 (2010), pp. 384-390 View PDFView Record in ScopusGoogle Scholar [176] H. Wu, X. Zhang, Z. Geng, Y. Yin, R. Hang, X. Huang, X. Yao, B. Tang Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings Appl. Surf. Sci., 308 (2014), pp. 43-49 View PDFView Record in ScopusGoogle Scholar [177] K. Rokosz, T. Hryniewicz, S. Raaen Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties Int. J. Adv. Manuf. Technol. (2015), pp. 1-13 View Record in ScopusGoogle Scholar [178] M. Babaei, C. Dehghanian, M. Babaei Electrochemical assessment of characteristics and corrosion behavior of Zr-containing coatings formed on titanium by plasma electrolytic oxidation Surf. Coat. Technol., 279 (2015), pp. 79-91 View PDFView Record in ScopusGoogle Scholar [179] Z. Yao, Y. Jiang, Z. Jiang, F. Wang, Z. Wu Preparation and structure of ceramic coatings containing zirconium oxide on Ti alloy by plasma electrolytic oxidation J. Mater. Process. Technol., 205 (2008), pp. 303-307 View PDFView Record in ScopusGoogle Scholar [180] S. Hariprasad, M. Ashfaq, T. Arunnellaiappan, M. Harilal, N. Rameshbabu Role of electrolyte additives on in-vitro corrosion behavior of DC plasma electrolytic oxidization coatings formed on cp-Ti Surf. Coat. Technol., 292 (2016), pp. 20-29 View PDFView Record in ScopusGoogle Scholar [181] M. Roknian, A. Fattah-alhosseini, S.O. Gashti Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 concentration on morphology and corrosion behavior of coatings in ringer's physiological solution J. Mater. Eng. Perform., 27 (2018), pp. 1343-1351 View PDFCrossRefView Record in ScopusGoogle Scholar [182] A. Fattah-Alhosseini, M.K. Keshavarz, M. Molaei, S.O. Gashti Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: effects of electrolyte on the microstructure and corrosion behavior of coatings Metall. Mater. Trans. A, 49 (2018), pp. 4966-4979 View PDFCrossRefView Record in ScopusGoogle Scholar [183] K. Venkateswarlu, S. Suresh, N. Rameshbabu, A.C. Bose, S. Subramanian Effect of electrolyte chemistry on the structural, morphological and corrosion characteristics of titania films developed on Ti-6Al-4V implant material by plasma electrolytic oxidation Key Eng. Mater., Trans Tech Publ (2012), pp. 436-441 View Record in ScopusGoogle Scholar [184] L. Zhu, X. Ye, G. Tang, N. Zhao, Y. Gong, Y. Zhao, J. Zhao, X. Zhang Corrosion test, cell behavior test, and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation J. Biomed. Mater. Res. - Part A, 78 (2006), pp. 515-522 View PDFView Record in ScopusGoogle Scholar [185] S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, A.K. Tsvetnikov, A.N. Minaev Effect of Conditions of treatment with superdispersed polytetrafluoroethylene on properties of composite coatings Protect. Metals Phys. Chem. Surf., 46 (2010), pp. 823-827 View Record in ScopusGoogle Scholar [186] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'Yanenko, D.A. Alpysbaeva, L.B. Boinovich Features of the occurrence of electrochemical processes in contact of sodium chloride solutions with the surface of superhydrophobic coatings on titanium Russ. J. Electrochem., 48 (2012), pp. 336-345 View Record in ScopusGoogle Scholar [187] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich Electrochemical properties of the superhydrophobic coatings on metals and alloys J. Taiwan Inst. Chem. Eng., 45 (2014), pp. 3075-3080 View PDFView Record in ScopusGoogle Scholar [188] A. AC02867314 Current opinion in solid state & materials science Elsevier Science (1996) Google Scholar [189] M. Aliofkhazraei, R.S. Gharabagh, M. Teimouri, M. Ahmadzadeh, G.B. Darband, H. Hasannejad Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium J. Alloys Compd., 685 (2016), pp. 376-383 View PDFView Record in ScopusGoogle Scholar [190] S. Di, Y. Guo, H. Lv, J. Yu, Z. Li Microstructure and properties of rare earth CeO2-doped TiO2 nanostructured composite coatings through micro-arc oxidation Ceram. Int., 41 (2015), pp. 6178-6186 View PDFView Record in ScopusGoogle Scholar [191] D. Dzhurinskiy, Y. Gao, W.K. Yeung, E. Strumban, V. Leshchinsky, P.J. Chu, A. Matthews, A. Yerokhin, R.G. Maev Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation Surf. Coat. Technol., 269 (2015), pp. 258-265 View PDFView Record in ScopusGoogle Scholar [192] A. Bahramian, K. Raeissi, A. Hakimizad An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating Appl. Surf. Sci., 351 (2015), pp. 13-26 View PDFView Record in ScopusGoogle Scholar [193] S. Sarbishei, M.A. Faghihi Sani, M.R. Mohammadi Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension Vacuum, 108 (2014), pp. 12-19 View PDFView Record in ScopusGoogle Scholar [194] H. Niazi, S. Yari, F. Golestani-Fard, M. Shahmiri, W. Wang, A. Alfantazi, R. Bayati How deposition parameters affect corrosion behavior of TiO2-Al2O3 nanocomposite coatings Appl. Surf. Sci., 353 (2015), pp. 1242-1252 View PDFView Record in ScopusGoogle Scholar [195] H. Sharifi, M. Aliofkhazraei, G.B. Darband, A.S. Rouhaghdam Tribological properties of PEO nanocomposite coatings on titanium formed in electrolyte containing ketoconazole Tribol. Int., 102 (2016), pp. 463-471 View PDFView Record in ScopusGoogle Scholar [196] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A.Y. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma-electrolytic oxidation of titanium and investigating their properties Protect. Metals Phys. Chem. Surf., 47 (2011), pp. 621-628 View Record in ScopusGoogle Scholar [197] T. Çelik, A. Alsaran, G. Purcek Effect of different surface oxidation treatments on structural, mechanical and tribological properties of ultrafine-grained titanium Surf. Coat. Technol., 258 (2014), pp. 842-848 View PDFView Record in ScopusGoogle Scholar [198] M. Fazel, H.R. Salimijazi, M.A. Golozar, M.R. Garsivaz Jazi A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process Appl. Surf. Sci., 324 (2015), pp. 751-756 View PDFView Record in ScopusGoogle Scholar [199] M.R. Garsivaz Jazi, M.A. Golozar, K. Raeissi, M. Fazel Evaluation of corrosion and tribocorrosion of plasma electrolytic oxidation treated Ti-6Al-4V alloy Surf. Coat. Technol., 244 (2014), pp. 29-36 View PDFView Record in ScopusGoogle Scholar [200] V.S. De Viteri, R. Bayón, A. Igartua, G. Barandika, J.E. Moreno, C.P.J. Peremarch, M.M. Pérez Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation Appl. Surf. Sci., 367 (2016), pp. 1-10 View PDFView Record in ScopusGoogle Scholar [201] F.S. Froes, M. Qian, M. Niinomi An introduction to titanium in consumer applications Titanium for Consumer Applications, Elsevier (2019), pp. 1-12 View Record in ScopusGoogle Scholar [202] C. Leyens, M. Peters Titanium and titanium alloys: fundamentals and applications John Wiley & Sons (2003) Google Scholar [203] A. Bloyce Surface engineering of titanium alloys for wear protection Proceedings of the Institution of Mechanical Engineers, Part J, J. Eng. Tribol., 212 (1998), pp. 467-476 View Record in ScopusGoogle Scholar [204] A. Galerie, Y. Wouters, J.P. Petit Interfacial reactions and diffusion during the thermal oxidation of titanium in water vapour Mater. Sci. forum, Trans Tech Publ (1997), pp. 113-118 View Record in ScopusGoogle Scholar [205] M. Jamesh, T.S. Narayanan, P.K. Chu Thermal oxidation of titanium: evaluation of corrosion resistance as a function of cooling rate Mater. Chem. Phys., 138 (2013), pp. 565-572 View PDFView Record in ScopusGoogle Scholar [206] S. Kumar, T.S. Narayanan, S.G.S. Raman, S. Seshadri Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization Mater. Chem. Phys., 119 (2010), pp. 337-346 View PDFView Record in ScopusGoogle Scholar [207] P. Gordienko, S. Gnedenkov Microarc Oxidation of Titanium and its Alloys Dalnauka, Vladivostok (1997) in, Russian Google Scholar [208] A.E. E8M-21 Standard Test Methods for Tension Testing of Metallic Materials ASTM International, West Conshohocken, PA (2021) Google Scholar [209] G. Lavrushin, S. Gnedenkov, P. Gordienko, S. Sinebryukhov Cyclic strength of titanium alloys, anodized under micro-arc conditions, in sea water Prot. Met., 38 (2002), pp. 363-365 View PDFView Record in ScopusGoogle Scholar [210] S. Gnedenkov, P. Gordienko, S. Sinebrukhov, O. Khrisanphova, T. Skorobogatova Anticorrosion, antiscale coatings obtained on the surface of titanium alloys by microarc oxidation method and used in seawater Corrosion, 56 (2000), pp. 24-31 View PDFCrossRefGoogle Scholar [211] Y. Sayi, K. Ramakumar, R. Prasad, C. Yadav, P. Shankaran, G. Chhapru, H. Jain Determination of H2 and D2 content in metals and alloys using hot vacuum extraction J. Radioanal. Nucl. Chem., 230 (1998), pp. 5-9 Google Scholar [212] G. Nancollas Phosphate precipitation in corrosion protection: Reaction mechanisms Corrosion, 39 (1983), pp. 77-82 View PDFCrossRefView Record in ScopusGoogle Scholar [213] L. Wagner, J. Bigoney Fatigue of titanium alloys Titanium and Titanium Alloys: Fundam. Appl. (2003), pp. 153-185 View Record in ScopusGoogle Scholar [214] R. Wanhill, S. Barter Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys Springer Science & Business Media (2011) Google Scholar [215] S. Gnedenkov, S. Sinebryukhov, V. Sergienko Composite Multifunctional Coatings on Metals and Alloys Formed by Plasma Electrolytic Oxidation Dal'nauka, Vladivostok (2013) Google Scholar [216] I. Azkarate, I. Aho-Mantila, L. Lunde, H. Flower Environment sensitive cracking of titanium alloys 12th international corrosion congress, Houston (1993), pp. 2492-2505 Google Scholar [217] D. Zhu, B.A. Lerch, S. Kalluri Fatig. Behav. Coated Titanium Alloys (2019) [218] E. Comini, M. Ferroni, V. Guidi, A. Vomiero, P.G. Merli, V. Morandi, M. Sacerdoti, G.Della Mea, G. Sberveglieri Effects of Ta/Nb-doping on titania-based thin films for gas-sensing Sens. Actuators B, 108 (2005), pp. 21-28 View PDFView Record in ScopusGoogle Scholar [219] S. Bassaki, H. Niazi, F. Golestani-Fard, R. Naghizadeh, R. Bayati Enhanced photocatalytic activity in p-NiO grafted n-TiO2 porous coatings J. Mater. Sci. Technol., 31 (2015), pp. 355-360 View PDFView Record in ScopusGoogle Scholar [220] V.S. Rudnev, M.S. Vasil'eva, A.Y. Ustinov, P.M. Nedozorov Certain characteristics of nickel-containing and copper-containing oxide-phosphate layers on titanium Protect. Metals Phys. Chem. Surf., 45 (2009), pp. 576-579 View Record in ScopusGoogle Scholar [221] M.S. Vasilyeva, V.S. Rudnev, A.Y. Ustinov, M.A. Tsvetnov Formation, composition, structure, and catalytic activity in CO oxidation of SiO2+TiO2/Ti composite before and after modification by MnOx or CoOx Surf. Coat. Technol., 275 (2015), pp. 84-89 View PDFView Record in ScopusGoogle Scholar [222] M. Vasilyeva, V. Rudnev, A.Y. Ustinov, I. Korotenko, E. Modin, O. Voitenko Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation Appl. Surf. Sci., 257 (2010), pp. 1239-1246 View PDFView Record in ScopusGoogle Scholar [223] I.V. Chernykh, I.V. Lukiyanchuk, V.S. Rudnev, P.M. Nedozorov, L.M. Tyrina, A.Y. Ustinov Silicate coatings on titanium, modified with transition metal oxides and their activity in CO oxidation Russ. J. Appl. Chem., 86 (2013), pp. 319-325 View Record in ScopusGoogle Scholar [224] M.S. Vasil'eva, V.S. Rudnev, O.E. Sklyarenko, L.M. Tyrina, N.B. Kondrikova Titanium-supported nickel-copper oxide catalysts for oxidation of carbon(II) oxide Russ. J. Gen. Chem., 80 (2010), pp. 1557-1562 View Record in ScopusGoogle Scholar [225] I.V. Lukiyanchuk, V.S. Rudnev, I.V. Chernykh, I.V. Malyshev, L.M. Tyrina, M.V. Adigamova Composites with transition metal oxides on aluminum and titanium and their activity in CO oxidation Surf. Coat. Technol., 231 (2013), pp. 433-438 View PDFView Record in ScopusGoogle Scholar [226] I.V. Lukiyanchuk, I.V. Chernykh, V.S. Rudnev, L.M. Tyrina, A.Y. Ustinov Silicate coatings on titanium modified by cobalt and/or copper oxides and their activity in CO oxidation Protect. Metals Phys. Chem. Surf., 51 (2015), pp. 448-457 View Record in ScopusGoogle Scholar [227] V.S. Rudnev, T.P. Yarovaya, T.A. Kaidalova, P.M. Nedozorov Growth of cerium-containing films on titanium and aluminum Inorg. Mater., 44 (2008), pp. 582-586 View Record in ScopusGoogle Scholar [228] V.S. Rudnev, M.S. Vasilyeva, I.V. Lukiyanchuk, I.V. Chernykh Deposition of cobalt-containing films on titanium by plasma electrolytic oxidation Russ. J. Appl. Chem., 85 (2012), pp. 953-956 View Record in ScopusGoogle Scholar [229] V.S. Rudnev, M.S. Vasil'eva, M.V. Bondarenko, V.G. Kuryavyi, N.B. Kondrikov Cobalt-containing layers on titanium Inorg. Mater., 43 (2007), pp. 642-644 View Record in ScopusGoogle Scholar [230] M.S. Vasilyeva, V.S. Rudnev, F. Wiedenmann, S. Wybornov, T.P. Yarovaya, X. Jiang Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium Appl. Surf. Sci., 258 (2011), pp. 719-726 View PDFView Record in ScopusGoogle Scholar [231] M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers Appl. Catal. A, 382 (2010), pp. 322-331 View PDFView Record in ScopusGoogle Scholar [232] J. He, Q.Z. Cai, D. Zhu, Q. Luo, D.Q. Zhang, X.W. Li, X. Zhao, W. Sun In-situ preparation of WO3/TiO2 composite film with increased photo quantum efficiency on titanium substrate Curr. Appl Phys., 11 (2011), pp. 98-100 View PDFView Record in ScopusGoogle Scholar [233] S. Stojadinović, N. Radić, R. Vasilić, M. Petković, P. Stefanov, L. Zeković, B. Grbić Photocatalytic properties of TiO2/WO3 coatings formed by plasma electrolytic oxidation of titanium in 12-tungstosilicic acid Appl. Catal. B, 126 (2012), pp. 334-341 View PDFView Record in ScopusGoogle Scholar [234] Z. Dohcevic-Mitrovic, S. Stojadinović, L. Lozzi, S. Aškrabić, M. Rosić, N. Tomić, N. Paunović, S. Lazović, M.G. Nikolić, S. Santucci WO3/TiO2 composite coatings: structural, optical and photocatalytic properties Mater. Res. Bull., 83 (2016), pp. 217-224 View PDFView Record in ScopusGoogle Scholar [235] J. He, Q.Z. Cai, Y.G. Ji, H.H. Luo, D.J. Li, B. Yu Influence of fluorine on the structure and photocatalytic activity of TiO2 film prepared in tungstate-electrolyte via micro-arc oxidation J. Alloys Compd., 482 (2009), pp. 476-481 View PDFView Record in ScopusGoogle Scholar [236] J.F. Li, L. Wan, J.Y. Feng Study on the preparation of titania films for photocatalytic application by micro-arc oxidation Sol. Energy Mater. Sol. Cells, 90 (2006), pp. 2449-2455 View PDFView Record in ScopusGoogle Scholar [237] Q. Luo, Q. Cai, J. He, X. Li, X. Chen, Z. Pan, Y. Li A novel way to prepare visible-light-responsive WO3/TiO2 composite film with high porosity Int. J. Appl. Ceram. Technol., 11 (2014), pp. 254-262 View PDFCrossRefView Record in ScopusGoogle Scholar [238] M.S. Vasilyeva, V.S. Rudnev, A.I. Tulush, P.M. Nedozorov, A.Y. Ustinov WOx, SiO2, TiO2/Ti composites, fabricated by means of plasma electrolytic oxidation, as catalysts of ethanol dehydration into ethylene Russ. J. Phys. Chem. A, 89 (2015), pp. 968-973 View Record in ScopusGoogle Scholar [239] K.R. Wu, C.H. Hung, C.W. Yeh, J.K. Wu Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering Appl. Surf. Sci., 263 (2012), pp. 688-695 View PDFView Record in ScopusGoogle Scholar [240] Y. Han, D.H. Chen, L. Zhang Nanocrystallized SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coatings formed by micro-arc oxidation for photocatalytic application Nanotechnology (2008), p. 19 Google Scholar [241] K. Nan, T. Wu, J. Chen, S. Jiang, Y. Huang, G. Pei Strontium doped hydroxyapatite film formed by micro-arc oxidation Mater. Sci. Eng. C, 29 (2009), pp. 1554-1558 View PDFView Record in ScopusGoogle Scholar [242] M.S. Vasilyeva, V.S. Rudnev, I.A. Korotenko, P.M. Nedozorov Producing and studying oxide coatings containing manganese and nickel compounds on titanium from electrolyte suspensions Protect. Metals Phys. Chem. Surf., 48 (2012), pp. 106-115 View Record in ScopusGoogle Scholar [243] C.S. Chi, J. Choi, Y. Jeong, O.Y. Lee, H.J. Oh Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis Thin Solid Films, 519 (2011), pp. 4676-4680 View PDFView Record in ScopusGoogle Scholar [244] H.J. Oh, C.S. Chi Eu-N-doped TiO2 photocatalyst synthesized by micro-arc oxidation Mater. Lett., 86 (2012), pp. 31-33 View PDFView Record in ScopusGoogle Scholar [245] N. Salami, M.R. Bayati, F. Golestani-Fard, H.R. Zargar UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers Mater. Res. Bull., 47 (2012), pp. 1080-1088 View PDFView Record in ScopusGoogle Scholar [246] T. Soejima, H. Yagyu, S. Ito One-pot synthesis and photocatalytic activity of Fe-doped TiO2 films with anatase-rutile nanojunction prepared by plasma electrolytic oxidation J. Mater. Sci., 46 (2011), pp. 5378-5384 View PDFCrossRefView Record in ScopusGoogle Scholar [247] S. Sridhar, A. Viswanathan, K. Venkateswarlu, N. Rameshbabu, N.L. Parthasarathi Enhanced visible light photocatalytic activity of P-block elements (C, N and F) doped porous TiO2 coatings on cp-Ti by micro-arc oxidation J. Porous Mater., 22 (2015), pp. 545-557 View PDFCrossRefView Record in ScopusGoogle Scholar [248] S. Stojadinović, N. Radić, B. Grbić, S. Maletić, P. Stefanov, A. Pačevski, R. Vasilić Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+coatings formed by plasma electrolytic oxidation Appl. Surf. Sci., 370 (2016), pp. 218-228 View PDFView Record in ScopusGoogle Scholar [249] V.S. Rudnev, L.M. Tyrina, I.V. Lukiyanchuk, T.P. Yarovaya, I.V. Malyshev, A.Y. Ustinov, P.M. Nedozorov, T.A. Kaidalova Titanium-supported Ce-, Zr-containing oxide coatings modified by platinum or nickel and copper oxides and their catalytic activity in CO oxidation Surf. Coat. Technol., 206 (2011), pp. 417-424 View PDFView Record in ScopusGoogle Scholar [250] L.M. Tyrina, V.S. Rudnev, T.P. Yarovaya, A.Y. Ustinov, I.V. Lukiyanchuk, V.V. Permyakov Deposition, composition, and activity in CO oxidation of anodic layers with platinum on aluminum and titanium Russ. J. Appl. Chem., 83 (2010), pp. 680-686 View Record in ScopusGoogle Scholar [251] I.V. Lukiyanchuk, V.S. Rudnev, L.M. Tyrina, I.V. Chernykh Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation Appl. Surf. Sci., 315 (2014), pp. 481-489 View PDFView Record in ScopusGoogle Scholar [252] Z. Yao, F. Jia, Y. Jiang, C. Li, Z. Jiang, X. Bai Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst Appl. Surf. Sci., 256 (2010), pp. 1793-1797 View PDFView Record in ScopusGoogle Scholar [253] M.S. Vasil'eva, V.S. Rudnev, A.Y. Ustinov, P.M. Nedozorov, N.B. Kondrikov Plasma-electrochemical formation of oxide layers on titanium in aqueous electrolytes with trilonate complexes of manganese Russ. J. Appl. Chem., 83 (2010), pp. 434-439 View Record in ScopusGoogle Scholar [254] X. Jiang, Y. Wang, C. Pan High concentration substitutional N-doped TiO2 film: Preparation, characterization, and photocatalytic property J. Am. Ceram. Soc., 94 (2011), pp. 4078-4083 View PDFCrossRefView Record in ScopusGoogle Scholar [255] L. Wan, J.F. Li, J.Y. Feng, W. Sun, Z.Q. Mao Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 139 (2007), pp. 216-220 View PDFView Record in ScopusGoogle Scholar [256] J.H. Lee, J.I. Youn, Y.J. Kim, I.K. Kim, K.W. Jang, H.J. Oh Photocatalytic characteristics of boron and nitrogen doped titania film synthesized by micro-arc oxidation Ceram. Int. (2015) Google Scholar [257] B.S. Necula, I. Apachitei, F.D. Tichelaar, L.E. Fratila-Apachitei, J. Duszczyk An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy Acta Biomater., 7 (2011), pp. 2751-2757 View PDFView Record in ScopusGoogle Scholar [258] M. Shokouhfar, S.R. Allahkaram Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles Surf. Coat. Technol., 291 (2016), pp. 396-405 View PDFView Record in ScopusGoogle Scholar [259] M.R. Bayati, M. Aminzare, R. Molaei, S.K. Sadrnezhaad Micro arc oxidation of nano-crystalline Ag-doped TiO2 semiconductors Mater. Lett., 65 (2011), pp. 840-842 View PDFView Record in ScopusGoogle Scholar [260] X. Jiang, Y. Wang, C. Pan Micro-arc oxidation of TC4 substrates to fabricate TiO2/YAG: Ce3+compound films with enhanced photocatalytic activity J. Alloys Compd., 509 (2011), pp. L137-L141 View PDFView Record in ScopusGoogle Scholar [261] I.V. Lukiyanchuk, E.K. Papynov, V.S. Rudnev, V.A. Avramenko, I.V. Chernykh, L.M. Tyrina, A.Y. Ustinov, V.G. Kuryavyi, D.V. Marinin Oxide layers with Pd-containing nanoparticles on titanium Appl. Catal. A, 485 (2014), pp. 222-229 View PDFView Record in ScopusGoogle Scholar [262] S. Petrović, S. Stojadinović, L. Rožić, N. Radić, B. Grbić, R. Vasilić Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology Surf. Coat. Technol., 269 (2015), pp. 250-257 View PDFView Record in ScopusGoogle Scholar [263] L.K. Mirelman, J.A. Curran, T.W. Clyne The production of anatase-rich photoactive coatings by plasma electrolytic oxidation Surf. Coat. Technol., 207 (2012), pp. 66-71 View PDFView Record in ScopusGoogle Scholar [264] M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh The effect of growth parameters on photo-catalytic performance of the MAO-synthesized TiO2 nano-porous layers Mater. Chem. Phys., 120 (2010), pp. 582-589 View PDFView Record in Scop
Collections