Publication:
Anticorrosion and Cytocompatibility Assessment of Graphene-Doped Hybrid Silica and Plasma Electrolytic Oxidation Coatings for Biomedical Applications

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2021-11-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
ACS
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Magnesium AZ31 alloy substrates were coated with different coatings, including sol–gel silica-reinforced with graphene nanoplatelets, sol–gel silica, plasma electrolytic oxidation (PEO), and combinations of them, to improve cytocompatibility and control the corrosion rate. Electrochemical corrosion tests, as well as hydrogen evolution tests, were carried out using Hanks’ solution as the electrolyte to assess the anticorrosion behavior of the different coating systems in a simulated body fluid. Preliminary cytocompatibility assessment of the different coating systems was carried out by measuring the metabolic activity, deoxyribonucleic acid quantification, and the cell growth of premyoblastic C2C12-GFP cell cultures on the surface of the different coating systems. Anticorrosion behavior and cytocompatibility were improved with the application of the different coating systems. The use of combined PEO + SG and PEO + SG/GNP coatings significantly decreased the degradation of the specimens. The monolayer sol–gel coatings, with and without GNPs, presented the best cytocompatibility improvement.
Description
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Biomaterials Science & Engineering, Copyright © 2021 American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsbiomaterials.1c00326.
UCM subjects
Materiales
Unesco subjects
3312 Tecnología de Materiales
Keywords
Citation
1Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561– 4573, DOI: 10.1016/j.actbio.2014.07.005 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 2Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online. 2013, 12, 62, DOI: 10.1186/1475-925x-12-62 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 3Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C. 2016, 68, 948– 963, DOI: 10.1016/j.msec.2016.06.020 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 4Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680– 1692, DOI: 10.1016/j.actbio.2010.02.028 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 5Xin, Y.; Hu, T.; Chu, P. K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011, 7, 1452– 1459, DOI: 10.1016/j.actbio.2010.12.004 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 6Mordike, B. L.; Ebert, T. Magnesium. Mater. Sci. Eng. A. 2001, 302, 37– 45, DOI: 10.1016/s0921-5093(00)01351-4 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 7Rashmir-Raven, A. M.; Richardson, D. C.; Aberman, H. M.; De Young, D. J. Response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods. J. Appl. Biomater. 1995, 6, 237– 242, DOI: 10.1002/jab.770060404 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 8Nagels, J.; Stokdijk, M.; Rozing, P. M. Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elb. Surg. 2003, 12, 35– 39, DOI: 10.1067/mse.2003.22 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 9Song, G.; Atrens, A. Understanding magnesium corrosion. A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837– 858, DOI: 10.1002/adem.200310405 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 10Song, G. L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11– 33, DOI: 10.1002/(sici)1527-2648(199909)1:1<11::aid-adem11>3.0.co;2-n [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 11Zeng, R.-c.; Zhang, J.; Huang, W. J.; Dietzel, W.; Kainer, K. U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, s763, DOI: 10.1016/s1003-6326(06)60297-5 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 12Virtanen, S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011, 176, 1600– 1608, DOI: 10.1016/j.mseb.2011.05.028 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 13Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696– 1701, DOI: 10.1016/j.corsci.2007.01.001 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 14Seitz, J.-M.; Eifler, R.; Bach, F.-W.; Maier, H. J. Magnesium degradation products: Effects on tissue and human metabolism. J. Biomed. Mater. Res. Part A. 2014, 102, 3744– 3753, DOI: 10.1002/jbm.a.35023 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 15Tan, L.; Wang, Q.; Lin, X.; Wan, P.; Zhang, G.; Zhang, Q.; Yang, K. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014, 10, 2333– 2340, DOI: 10.1016/j.actbio.2013.12.020 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 16Song, G. L. Corrosion Behavior and Prevention Strategies for Magnesium (Mg) Alloys; Woodhead Publishing Limited, 2013.[Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 17Taylor, S. R. Coatings for Corrosion Protection: An Overview. Encycl. Mater. Sci. Technol. 2001, 1259– 1263, DOI: 10.1016/b0-08-043152-6/00237-0 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 18Santos-Coquillat, A.; Mohedano, M.; Martinez-Campos, E.; Arrabal, R.; Pardo, A.; Matykina, E. Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater. Sci. Eng. C. 2019, 97, 738– 752, DOI: 10.1016/j.msec.2018.12.097 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 19Santos-Coquillat, A.; Esteban-Lucia, M.; Martinez-Campos, E.; Mohedano, M.; Arrabal, R.; Blawert, C.; Zheludkevich, M. L.; Matykina, E. PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications. Mater. Sci. Eng. C. 2019, 105, 110026, DOI: 10.1016/j.msec.2019.110026 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 20Omar, S. A.; Ballarre, J.; Castro, Y.; Martinez Campos, E.; Schreiner, W.; Durán, A.; Cere, S. M. 58S and 68S sol-gel glass-like bioactive coatings for enhancing the implant performance of AZ91D magnesium alloy. Surf. Coatings Technol. 2020, 400, 126224, DOI: 10.1016/j.surfcoat.2020.126224 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 21Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S. C.; Chicot, D.; Velard, F.; Khireddine, H.; Montagne, A.; Kerdjoudj, H. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings. Mater. Sci. Eng. C. 2017, 72, 650– 658, DOI: 10.1016/j.msec.2016.11.129 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 22Böttcher, H. Bioactive Sol-Gel Coatings. J. Prakt. Chem. 2000, 342, 427– 436, DOI: 10.1002/1521-3897(200006)342:5<427::aid-prac427>3.0.co;2-b [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 23Ehlert, N.; Badar, M.; Christel, A.; Lohmeier, S. J.; Luessenhop, T.; Stieve, M.; Lenarz, T.; Mueller, P. P.; Behrens, P. Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. J. Mater. Chem. 2011, 21, 752– 760, DOI: 10.1039/c0jm01487g [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 24Lei, Q.; Guo, J.; Noureddine, A.; Wang, A.; Wuttke, S.; Brinker, C. J.; Zhu, W. Sol–Gel-Based Advanced Porous Silica Materials for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1909539, DOI: 10.1002/adfm.201909539 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 25Montali, A. Antibacterial coating systems. Injury 2006, 37, S81, DOI: 10.1016/j.injury.2006.04.013 [Crossref], [PubMed], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 26Moutarlier, V.; Neveu, B.; Gigandet, M. P. Evolution of corrosion protection for sol-gel coatings doped with inorganic inhibitors. Surf. Coatings Technol. 2008, 202, 2052– 2058, DOI: 10.1016/j.surfcoat.2007.08.040 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 27Yasakau, K. A.; Zheludkevich, M. L.; Karavai, O. V.; Ferreira, M. G. S. Influence of inhibitor addition on the corrosion protection performance of sol-gel coatings on AA2024. Prog. Org. Coatings. 2008, 63, 352– 361, DOI: 10.1016/j.porgcoat.2007.12.002 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 28Wang, H.; Akid, R. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel. Corros. Sci. 2008, 50, 1142– 1148, DOI: 10.1016/j.corsci.2007.11.019 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 29Radin, S.; Ducheyne, P.; Kamplain, T.; Tan, B. H. Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J. Biomed. Mater. Res. 2001, 57, 313– 320, DOI: 10.1002/1097-4636(200111)57:2<313::aid-jbm1173>3.0.co;2-e [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 30Oleinik, S. V.; Rudnev, V. S.; Kuzenkov, A. Y.; Yarovaya, T. P.; Trubetskaya, L. F.; Nedozorov, P. M. Modification of plasma electrolytic coatings on aluminum alloys with corrosion inhibitors. Prot. Met. Phys. Chem. Surfaces. 2013, 49, 885– 890, DOI: 10.1134/s2070205113070113 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 31Oleinik, S. V.; Rudnev, V. S.; Kuzenkov, Y. A.; Yarovaya, T. P.; Trubetskaya, L. F.; Nedozorov, P. M. Corrosion inhibitors in PEO-coatings on aluminum alloys. Prot. Met. Phys. Chem. Surfaces. 2014, 50, 893– 897, DOI: 10.1134/s2070205114070120 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 32Fernández-Hernán, J. P.; López, A. J.; Torres, B.; Rams, J. Silicon oxide multilayer coatings doped with carbon nanotubes and graphene nanoplatelets for corrosion protection of AZ31B magnesium alloy. Prog. Org. Coatings. 2020, 148, 105836, DOI: 10.1016/j.porgcoat.2020.105836 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 33López, A. J.; Ureña, A.; Rams, J. Wear resistant coatings: Silica sol-gel reinforced with carbon nanotubes. Thin Solid Films 2011, 519, 7904– 7910, DOI: 10.1016/j.tsf.2011.05.076 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 34Lammel, T.; Navas, J. M. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1, Aquat. Toxicol 2014, 150, 55– 65, DOI: 10.1016/j.aquatox.2014.02.016 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 35Pinto, A. M.; Moreira, J. A.; Magalhães, F. D.; Gonçalves, I. C. Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids Surf., B 2016, 146, 818– 824, DOI: 10.1016/j.colsurfb.2016.07.031 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 36Lammel, T.; Boisseaux, P.; Fernández-Cruz, M. L.; Navas, J. M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2, Part. Fibre Toxicol. 2013, 10, 27, DOI: 10.1186/1743-8977-10-27 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 37Wang, D.; Bierwagen, G. P. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coatings. 2009, 64, 327– 338, DOI: 10.1016/j.porgcoat.2008.08.010 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 38López, A. J.; Otero, E.; Rams, J. Sol-gel silica coatings on ZE41 magnesium alloy for corrosion protection. Surf. Coatings Technol. 2010, 205, 2375– 2385, DOI: 10.1016/j.surfcoat.2010.09.027 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 39Li, Q. Sol-gel coatings to improve the corrosion resistance of magnesium (Mg) alloys. Corros. Prev. Magnesium Alloys 2013, 469– 485, DOI: 10.1533/9780857098962.3.469 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 40Guglielmi, M. Sol-Gel Coatings on Metals. J. Sol-Gel Sci. Technol. 1997, 8, 443– 449, DOI: 10.1007/bf02436880 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 41Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloy. 2017, 5, 74– 132, DOI: 10.1016/j.jma.2017.02.004 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 42Mohedano, M.; Luthringer, B. J. C.; Mingo, B.; Feyerabend, F.; Arrabal, R.; Sanchez-Egido, P. J.; Blawert, C.; Willumeit-Römer, R.; Zheludkevich, M. L.; Matykina, E. Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour. Surf. Coatings Technol. 2017, 315, 454– 467, DOI: 10.1016/j.surfcoat.2017.02.050 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 43Moon, S.; Arrabal, R.; Matykina, E. 3-Dimensional structures of open-pores in PEO films on AZ31 Mg alloy. Mater. Lett. 2015, 161, 439– 441, DOI: 10.1016/j.matlet.2015.08.149 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 44Ivanou, D. K.; Yasakau, K. A.; Kallip, S.; Lisenkov, A. D.; Starykevich, M.; Lamaka, S. V.; Ferreira, M. G. S.; Zheludkevich, M. L. Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol-gel techniques. RSC Adv. 2016, 6, 12553– 12560, DOI: 10.1039/c5ra22639b [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 45Beganskiene, A.; Raudonis, R.; Zemljic Jokhadar, S.; Batista, U.; Kareiva, A. Modified sol-gel coatings for biotechnological applications. J. Phys. Conf. Ser. 2007, 93, 012050, DOI: 10.1088/1742-6596/93/1/012050 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 46Arcos, D.; Vallet-Regí, M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010, 6, 2874– 2888, DOI: 10.1016/j.actbio.2010.02.012 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 47Razavi, M. Biodegradation, Bioactivity and In vivo Biocompatibility Analysis of Plasma Electrolytic Oxidized (PEO) Biodegradable Mg Implants. Phys. Sci. Int. J. 2014, 4, 708– 722, DOI: 10.9734/psij/2014/9265 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 48Muñoz, M.; Torres, B.; Mohedano, M.; Matykina, E.; Arrabal, R.; López, A. J.; Rams, J. PLA deposition on surface treated magnesium alloy: Adhesion, toughness and corrosion behaviour. Surf. Coatings Technol. 2020, 388, 125593, DOI: 10.1016/j.surfcoat.2020.125593 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 49Stern, M.; Geary, A. L. Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56– 73, DOI: 10.1149/1.2428473 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 50Scully, J. R. Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 2000, 56, 199– 218, DOI: 10.5006/1.3280536 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 51Persaud-Sharma, D.; Mcgoron, A. Biodegradable magnesium alloys: A review of material development and applications. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25– 39, DOI: 10.4028/www.scientific.net/jbbte.12.25 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 52Song, G.; Atrens, A.; StJohn, D. An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. In Essential Readings in Magnesium Technology; Mathaudhu, S. N., Luo, A. A., Neelameggham, N. R., Nyberg, E. A., Sillekens, W. H., Eds.; Springer: Cham, 2016; pp 565– 572.[Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 53Shi, Z.; Liu, M.; Atrens, A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 2010, 52, 579– 588, DOI: 10.1016/j.corsci.2009.10.016 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 54Al-Nasiry, S.; Geusens, N.; Hanssens, M.; Luyten, C.; Pijnenborg, R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod. 2007, 22, 1304– 1309, DOI: 10.1093/humrep/dem011 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 55Em, A. FluoReporter Blue Fluorometric dsDNA Quantitation Kit, (F-2962) Quick Facts; Invitrogen, 2003; pp 9– 11.Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 56Mohedano, M.; Lu, X.; Matykina, E.; Blawert, C.; Arrabal, R.; Zheludkevich, M. L. Plasma electrolytic oxidation (PEO) of metals and alloys. Encycl. Interfacial Chem. Surf. Sci. Electrochem. 2018, 6, 423– 438, DOI: 10.1016/b978-0-12-409547-2.13398-0 [Crossref], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 57Wierzbicka, E.; Vaghefinazari, B.; Lamaka, S. V.; Zheludkevich, M. L.; Mohedano, M.; Moreno, L.; Visser, P.; Rodriguez, A.; Velasco, J.; Arrabal, R.; Matykina, E. Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy. Corros. Sci. 2021, 180, 109189, DOI: 10.1016/j.corsci.2020.109189 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 58Atrens, A.; Dietzel, W. The negative difference effect and unipositive Mg. Adv. Eng. Mater. 2007, 9, 292– 297, DOI: 10.1002/adem.200600275 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 59Pezzato, L.; Rigon, M.; Martucci, A.; Brunelli, K.; Dabalà, M. Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surf. Coatings Technol. 2019, 366, 114– 123, DOI: 10.1016/j.surfcoat.2019.03.023 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 60Matykina, E.; Garcia, I.; Arrabal, R.; Mohedano, M.; Mingo, B.; Sancho, J.; Merino, M. C.; Pardo, A. Role of PEO coatings in long-term biodegradation of a Mg alloy. Appl. Surf. Sci. 2016, 389, 810– 823, DOI: 10.1016/j.apsusc.2016.08.005 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 61Ng, W. F.; Chiu, K. Y.; Cheng, F. T. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater. Sci. Eng. C. 2010, 30, 898– 903, DOI: 10.1016/j.msec.2010.04.003 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 62King, A. D.; Birbilis, N.; Scully, J. R. Accurate electrochemical measurement of magnesium corrosion rates; A combined impedance, mass-loss and hydrogen collection study. Electrochim. Acta. 2014, 121, 394– 406, DOI: 10.1016/j.electacta.2013.12.124 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 63Niu, B.; Shi, P.; Shanshan, E.; Wei, D.; Li, Q.; Chen, Y. Preparation and characterization of HA sol–gel coating on MAO coated AZ31 alloy. Surf. Coatings Technol. 2016, 286, 42– 48, DOI: 10.1016/j.surfcoat.2015.11.056 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 64Jang, Y.; Tan, Z.; Jurey, C.; Collins, B.; Badve, A.; Dong, Z.; Park, C.; Kim, C. S.; Sankar, J.; Yun, Y. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant. Mater. Sci. Eng. C. 2014, 45, 45– 55, DOI: 10.1016/j.msec.2014.08.052 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 65Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329– 1344, DOI: 10.1016/j.biomaterials.2007.12.021 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 66Tiainen, H.; Monjo, M.; Knychala, J.; Nilsen, O.; Lyngstadaas, S. P.; Ellingsen, J. E.; Haugen, H. J. The effect of fluoride surface modification of ceramic TiO2 on the surface properties and biological response of osteoblastic cells in vitro. Biomed. Mater. 2011, 6, 045006, DOI: 10.1088/1748-6041/6/4/045006 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 67Qu, W.-J.; Zhong, D.-B.; Wu, P.-F.; Wang, J.-F.; Han, B. Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J. Bone Miner. Metab. 2008, 26, 328– 334, DOI: 10.1007/s00774-007-0832-2 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 68Li, X.; Meng, L.; Wang, F.; Hu, X.; Yu, Y. Sodium fluoride induces apoptosis and autophagy via the endoplasmic reticulum stress pathway in MC3T3-E1 osteoblastic cells. Mol. Cell. Biochem. 2019, 454, 77– 85, DOI: 10.1007/s11010-018-3454-1 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 69Raucci, M. G.; Guarino, V.; Ambrosio, L. Hybrid composite scaffolds prepared by sol-gel method for bone regeneration. Compos. Sci. Technol. 2010, 70, 1861– 1868, DOI: 10.1016/j.compscitech.2010.05.030 [Crossref], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 70Muraca, M.; Vilei, M. T.; Zanusso, G. E.; Ferraresso, C.; Boninsegna, S.; Dal Monte, R.; Carraro, P.; Carturan, G. SiO2 entrapment of animal cells: Liver-specific metabolic activities in silica-overlaid hepatocytes. Artif. Organs 2002, 26, 664– 669, DOI: 10.1046/j.1525-1594.2002.06924.x [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 71Kortesuo, P.; Ahola, M.; Kangas, M.; Kangasniemi, I.; Yli-Urpo, A.; Kiesvaara, J. In vitro evaluation of sol-gel processed spray dried silica gel microspheres as carrier in controlled drug delivery. Int. J. Pharm. 2000, 200, 223– 229, DOI: 10.1016/s0378-5173(00)00393-8 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 72Radin, S.; Chen, T.; Ducheyne, P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 2009, 30, 850– 858, DOI: 10.1016/j.biomaterials.2008.09.066 [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 73Kortesuo, P.; Ahola, M.; Karlsson, S.; Kangasniemi, I.; Kiesvaara, J.; Yli-Urpo, A. Sol-gel-processed sintered silica xerogel as a carrier in controlled drug delivery. J. Biomed. Mater. Res. 1999, 44, 162– 167, DOI: 10.1002/(sici)1097-4636(199902)44:2<162::aid-jbm6>3.0.co;2-p [Crossref], [PubMed], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID 74Sieminska, L.; Zerda, T. W. Diffusion of steroids from sol-gel glass. J. Phys. Chem. 1996, 100, 4591, DOI: 10.1021/jp952759g [ACS Full Text ACS Full Text], [CAS], Google ScholarOpenURL UNIV COMPLUTENSE DE MADRID