Publication:
Function spaces of Lorentz-Sobolev type: Atomic decompositions, characterizations in terms of wavelets, interpolation and multiplications

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-03-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We establish atomic decompositions and characterizations in terms of wavelets for Besov-Lorentz spaces Bsq Lp,r (Rn) and for Triebel-Lizorkin-Lorentz spaces Fsq Lp,r (Rn) in the whole range of parameters. As application we obtain new interpolation formulae between spaces of Lorentz-Sobolev type. We also remove the restrictions on the parameters in a result of Peetre on optimal embeddings of Besov spaces. Moreover, we derive results on diffeomorphisms, extension operators and multipliers for Bsq Lp,∞ (Rn). Finally, we describe Bsq Lp,r (Rn) as an approximation space, which allows us to show new sufficient conditions on parameters for Bsq Lp,r (Rn) to be a multiplication algebra.
Description
CRUE-CSIC (Acuerdos Transformativos 2022)
Unesco subjects
Keywords
Citation
[1] A. Almeida. On interpolation properties of generalized Besov spaces. In Further Progress in Analysis, pages 601-610. World Scientific, London, 2009. doi:10.1142/9789812837332_0055. [2] A. Almeida and A. M. Caetano. Generalized Hardy spaces. Acta Math. Sin. (Engl. Ser.), 26:1673-1692, 2010. doi:10.1007/s10114-010-8647-9. [3] A. Almeida and A. M. Caetano. Real interpolation of generalized Besov-Hardy spaces and applications. J. Fourier Anal. Appl., 17:691-719, 2011. doi:10.1007/s00041-010-9145-2. [4] T. Aoki. Locally bounded linear topologycal maps. Proc. Imp. Acad. Tokyo, 18:588-594, 1942. [5] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, Boston, 1988. [6] J. Bergh and J. Löfström. Interpolation Spaces. An Introduccion. Springer, Berlin, 1976. [7] B. F. Besoy, F. Cobos, and H. Triebel. On function spaces of Lorentz-Sobolev type. Math. Ann., 2021. doi:10.1007/s00208-021-02168-9. [8] B. F. Besoy, D. D. Haroske, and H. Triebel. Traces of some weighted function spaces and related non-standard real interpolation of Besov spaces. Preprint, 2020. URL: https://arxiv.org/abs/2009.03656. [9] P. L. Butzer and K. Scherer. Approximationsprozesse und Interpolationsmethoden. Mannheim, Zürich, 1968. [10] A. M. Caetano. Subatomic representation of Bessel potential spaces modelled on Lorentz spaces. In The J. A. Sampaio Martins Anniversary Volume, volume 34 of Textos de Matemática, Série B, pages 37-47. Coimbra, 2004. [11] A. Cianchi and L. Pick. An optimal endpoint trace embedding. Ann. Inst. Fourier, 60:939-951, 2010. doi:10.5802/aif.2543. [12] F. Cobos and O. Domínguez. Approximation spaces, limiting interpolation and Besov spaces. J. Approx. Theory, 189:43-66, 2015. doi:10.1016/j.jat.2014.09.002. [13] F. Cobos, O. Domínguez, and T. Kühn. Approximation and entropy numbers of embeddings between approximation spaces. Constr. Approx., 47:453-486, 2018. doi:10.1007/s00365-017-9383-5. [14] F. Cobos, O. Domínguez, and H. Triebel. Characterizations of logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, wavelets and semi-groups. J. Funct. Anal., 270:4386-4425, 2016. doi: 10.1016/j.jfa.2016.03.007. [15] R. A. De Vore and G. G. Lorentz. Constructive Approximation. Springer, Berlin, 1993. [16] D. E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators. Cambridge Univ. Press, Cambridge, 1996. [17] C. Fefferman, N. M. Riviere, and Y. Sagher. Interpolation between Hp spaces: the real method. Trans. Amer. Math. Soc., 191:75-81, 1974. doi:10.2307/1996982. [18] C. Fefferman and E. M. Stein. Some maximal inequalities. Amer. J. Math., 93:107-115, 1971. doi:10.2307/2373450. [19] M. Frazier and B. Jawerth. Decomposition of Besov spaces. Indiana Univ. Math. J., 34:777-799, 1985. [20] M. Frazier, B. Jawerth, and G. Weiss. Littlewood-Paley Theory and the Study of Function Spaces, volume 79. Mem. Amer. Math. Soc., 1991. [21] D. Goldberg. A local version of real Hardy spaces. Duke Math. J., 46:27-42, 1979. doi:10.1215/S0012-7094-79-04603-9. [22] L. Grafakos. Modern Fourier Analysis. Springer, New York, third edition, 2014. [23] L. Grafakos and L. Slavíková. A sharp version of the Hörmander multiplier theorem. Int. Math. Res. Not. IMRN, 15:4764-4783, 2019. doi:10.1093/imrn/rnx314. [24] D. D. Haroske and I. Piotrowska. Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis. Math. Nachr., 281:1476-1494, 2008. doi:10.1002/mana.200510690. [25] D. D. Haroske, P. Skandera, and H. Triebel. An approach to wavelet isomorphisms of function spaces via atomic representation. J. Fourier Anal. Appl., 24:830-871, 2018. doi:10.1007/s00041-017-9538-6. [26] P. Hobus and J. Saal. Triebel-Lizorkin-Lorentz spaces and the Navier-Stokes equations. Z. Anal. Anwend., 38:41-72, 2019. doi:10.4171/ZAA/1627. [27] R. A. Hunt. On L(p,q) spaces. Enseign. Math., 12:249-276, 1966. [28] G. Köthe. Topological Vector Spaces I. Springer, Berlin, 1969. [29] J. Peetre. Sur les espaces de Besov. C. R. Acad. Sci. Paris, 264:281-283, 1967. [30] J. Peetre. New Thoughts on Besov Spaces. Duke Univ. Math. Series, Durham, 1976. [31] J. Peetre and G. Sparr. Interpolation of normed abelian groups. Ann. Mat. Pure Appl., 92:217-262, 1972. doi:10.1007/BF02417949. [32] P. P. Petrushev and V. A. Popov. Rational Approximation of Real Functions, volume 28 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press, Cambrigde, 1987. [33] A. Pietsch. Approximation spaces. J. Approx. Theory, 32:115-134, 1981. doi:10.1016/0021-9045(81)90109-X. [34] S. Rolewicz. On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astrono. Phys., 5:471-473, 1957. [35] T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. W. de Gruyter, Berlin, 1996. [36] A. Seeger and W. Trebels. Embeddings for spaces of Lorentz-Sobolev type. Math. Ann., 373:1017-1056, 2019. doi:10.1007/s00208-018-1730-8. [37] E. M. Stein. Editor's note: the differentiability of functions in Rn. Ann. of Math., 113:383-385, 1981. [38] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, 1978. [39] H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983. [40] H. Triebel. Theory of Function Spaces II. Birkhäuser, Basel, 1992. [41] H. Triebel. Theory of Function Spaces III. Birkhäuser, Basel, 2006. [42] H. Triebel. Function Spaces and Wavelets on Domains. European Math. Soc. Publishing House, Zürich, 2008. [43] H. Triebel. Hybrid Function Spaces, Heat and Navier-Stokes Equations. European Math. Soc. Publishing House, Zürich, 2014. [44] H. Triebel. Tempered Homogeneous Function Spaces. European Math. Soc. Publishing House, Zürich, 2015. [45] H. Triebel. PDE Models for Chemotaxis and Hydrodynamics in Supercritical Function Spaces. European Math. Soc. Publishing House, Zürich, 2017. [46] H. Triebel. Theory of Function Spaces IV. Birkhäuser, 2020. [47] Z. Xiang and W. Yan. On the well-posedness of the quasi-geostrophic equation in the Triebel-Lizorkin-Lorentz spaces. J. Evolv. Equ., 11:241-263, 2011. doi:10.1007/s00028-010-0090-y. [48] Z. Xiang and W. Yan. On the well-posedness of Boussinesq equation in Triebel-Lizorkin-Lorentz spaces. Abstract and Applied Analysis, 2012. Article ID 573084, 17 p. doi:10.1155/2012/573087. [49] Q. Yang, Z. Cheng, and L. Peng. Uniform characterization of function spaces by wavelets. Acta Math. Sci. Ser. A (Chin. Ed.), 25:130-144, 2005.
Collections