Impacto
Downloads
Downloads per month over past year
Caamaño Aldemunde, Iván and Jaramillo Aguado, Jesús Ángel and Prieto Yerro, M. Ángeles (2022) Characterizing Sobolev spaces of vector-valued functions. Journal of Mathematical Analysis and Applications, 514 (1). p. 126250. ISSN 0022-247X
Preview |
PDF
Creative Commons Attribution Non-commercial No Derivatives. 455kB |
Official URL: https://doi.org/10.1016/j.jmaa.2022.126250
Abstract
We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN and a Banach space V, we characterize the functions in the Sobolev-Reshetnyak space R1,p(Ω, V), where 1 ≤p≤∞, in terms of the existence of partial metric derivatives or partial w∗-derivatives with suitable integrability properties. In the case p=∞ the Sobolev-Reshetnyak space R1,∞(Ω, V)is characterized in terms of a uniform local Lipschitz property. We also consider the special case of the space V=l∞.
Item Type: | Article |
---|---|
Additional Information: | CRUE-CSIC (Acuerdos Transformativos 2022) |
Uncontrolled Keywords: | Sobolev spaces; Vector-valued functions |
Subjects: | Sciences > Mathematics > Functional analysis and Operator theory |
ID Code: | 72016 |
Deposited On: | 03 May 2022 14:04 |
Last Modified: | 02 Jun 2022 15:57 |
Origin of downloads
Repository Staff Only: item control page