Publication:
Ensayo de simulaciones numéricas para la prevención de desastres en la laguna 513 (cordillera blanca, Perú)

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
En muchas áreas de montaña alrededor del mundo, como consecuencia del impacto del cambio climático actual, el riesgo de Glacier Lake Outburst Floods (GLOFs) se ha incrementado debido a la formación de nuevas lagunas a causa de la retracción de los glaciares. Ese proceso está siendo especialmente relevante en la Cordillera Blanca, la alineación de montañas con glaciares actuales más grande de la zona tropical de la Tierra, donde se localiza el área de estudio de este trabajo. Se ha ensayado una modelización de los eventos en cascada que serían causa y efecto de un GLOF en la laguna 513, al suroeste del Nevado Hualcán. El modelo consta de tres fases, en las que se han simulado: 1) Una avalancha de hielo y rocas que impacta en la laguna (en el módulo RAMMS AVALANCHE). 2) El tránsito hidráulico del caudal que la avalancha genera en la laguna (en HEC-RAS). 3) El flujo de detritos generado por el desbordamiento de la laguna, que arranca desde la salida del vaso y alcanza los centros poblados localizados vertiente abajo de la laguna, terminando en la ciudad de Carhuaz. Las simulaciones han permitido cartografiar las áreas que podrían ser afectadas por el GLOF, diferenciando peligrosidades media y alta. También se ha desarrollado una aplicación en ArcGIS online como instrumento para facilitar la transferencia de resultados, en relación con la prevención de desastres, a la sociedad local: tomadores de decisiones y población en riesgo.
In many mountain areas around the world, as a consequence of the impact of climate change, the risk of Glacier Lake Outburst Floods (GLOFs) has increased due to the formation of new lakes and the retreat of glaciers. This process is especially showcased in the Cordillera Blanca, the largest alignment of mountains with current glaciers in the tropical zone of the Earth, where the study area of this work is located. A modeling of the cascade events that would be cause and effect of a GLOF has been tested in lake 513, southwest of Nevado Hualcán. The model consists of three phases, in which it has been simulated: 1) An avalanche of ice and rocks that impacts the lake (in the RAMMS AVALANCHE module). 2) The hydraulic transit of the flow that the avalanche generates in the lake (in HEC-RAS). 3) The debris flow generated by the overflow of the lake, which starts from the outlet of the basin and reaches the populated centers located downstream of the lake, ending in the city of Carhuaz. The simulations have made it possible to map the areas that could be affected by the GLOF, differentiating medium and high hazards. An application in ArcGIS online has also been developed as an instrument to facilitate the transfer of results, in relation to disaster prevention, to the local population: decision makers and population at risk.
Description
Keywords
Citation
Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., & Kumari, A. (2016). Glacial lake outburst flood risk in Himachal Pradesh , India : an integrative and anticipatory approach considering current and future threats. Natural Hazards, November 2017. https://doi.org/10.1007/s11069-016-2511-x Allison, E. A. (2015). The spiritual significance of glaciers in an age of climate change. 6(October), 493–508. https://doi.org/10.1002/wcc.354 Ames, A., & Francou, B. (1995). Cordillera Blanca. Glaciares en la historia. ANA. (2014a). Inventario de Glaciares en el Perú. II Actualización. Ministerio de Agricultura y Riego, 56. http://ponce.sdsu.edu/INVENTARIO_GLACIARES_ANA.pdf ANA. (2014b). Inventario de Glaciares y Lagunas: Glaciares. Unidad de Glaciología y Recursos Hídricos, 1, 56. http://www.minam.gob.pe/cambioclimatico/wpcontent/uploads/sites/11/2013/10/Inventario-de-Glaciares-y-Cuenca.pdf ANA. (2014c). Inventario Nacional de Glaciares y Lagunas. Inventario de lagunas glaciares del Peru. ANA. (2015). Inspección técnica de la Laguna 513 (p. 12). Ashraf, A., Naz, R., & Roohi, R. (2012). Glacial lake outburst flood hazards in Hindukush , Karakoram and Himalayan Ranges of Pakistan : implications and risk analysis. 5705. https://doi.org/10.1080/19475705.2011.615344 Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B. W., Salz, M., & Schneider, M. (2017). Manual RAMMS - rapid mass movements simulation. 1–116. Benn, D. I., Owen, L. A., Osmaston, H. A., Seltzer, G. O., Porter, S. C., & Mark, B. (2005). Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International, 138–139, 8–21. https://doi.org/10.1016/j.quaint.2005.02.003 Berger, C., McArdell, B. W., & Schlunegger, F. (2011). Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research: Earth Surface, 116(1), 1–18. https://doi.org/10.1029/2010JF001722 Bernbaum, E. (2006). Sacred Mountains : Themes and Teachings. 4741(January). https://doi.org/10.1659/0276-4741(2006)26 Blard, P., Sylvestre, F., Tripati, A. K., Claude, C., Causse, C., Coudrain, A., & Condom, T. (2011). Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas : new insights from 14 C , U e Th dating and d 18 O of carbonates. Quaternary Science Reviews, 30(27–28), 3973–3989. https://doi.org/10.1016/j.quascirev.2011.11.001 Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828 CAA (2000). Mapa Cordillera Blanca Nord (Perú). Alpenvereinskartographie (sección cartográfica) del Oesterreichischer Alpenverein (Club Alpino Austriaco). Carey, M., Huggel, C., Bury, J., Portocarrero, C., & Haeberli, W. (2012). An integrated socioenvironmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112(3–4), 733–767. https://doi.org/10.1007/s10584-011-0249-8 Castro, Walter; Zarate, Ricardo; Alvarez, Luis; Palacios, J.J.; Torres, G.M.; Martinez, M. (2015). Vulnerabilidad y riesgo por amenazas naturales en el sector Lagunas. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1–2), 1–14. https://doi.org/10.1016/j.coldregions.2010.04.005 Christie, D., Lara, A., Barichivich, J., Villalba, R., Morales, M., & Cuq, E. (2009). El Niño Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Clark, P. U., Dyke, A., Shakun, J., Carlson, A., Clark, J., Wohlfarth, B., Mitrovica, J., Hostetler, S., & McCabe, M. (2009). The Last Glacial Maximum. June 2014. https://doi.org/10.1126/science.1172873 Collins, M., An, S. Il, Cai, W., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., & Wittenberg, A. (2010). The impact of global warming on the tropical Pacific Ocean and El Nĩo. Nature Geoscience, 3(6), 391–397. https://doi.org/10.1038/ngeo868 Cook, S. J., & Quincey, D. J. (2015). Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics, 3(4), 559–575. https://doi.org/10.5194/esurf-3-559-2015 Crichton, D. (1999). The risk triangle. In Natural Disaster Management (pp. 102–103). Emmer, A., & Cochachin, A. (2013). The causes and mechanisms os moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. 2(2), 5–15. Emmer, A., Klimeš, J., Mergili, M., Vilímek, V., & Cochachin, A. (2016). 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena, 147, 269–279. https://doi.org/10.1016/j.catena.2016.07.032 Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney, K. B., & OliverSmith, A. (2009). A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 108(1–2), 96–118. https://doi.org/10.1016/j.enggeo.2009.06.020 Evans, S. G., & Clague, J. J. (1994). Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10(1–4), 107–128. https://doi.org/10.1016/0169-555X(94)90011-6 Fernández-Sanchez, A., Úbeda, J., Tanarro, L.M., Bonshoms, M., Vidaller, I., Chancafe, J., (2021). The climate of the Cordillera Blanca (Peru), 1986-2019, according to available meteorological observations. En publicación. Fischer, J. T., Kowalski, J., & Pudasaini, S. P. (2012). Topographic curvature effects in applied avalanche modeling. Cold Regions Science and Technology, 74–75, 21–30. https://doi.org/10.1016/j.coldregions.2012.01.005 Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., & Lewis, B. (2011). A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management, 8(1). https://doi.org/10.2202/1547-7355.1792 Francou, B., Vuille, M., Favier, V., & Cáceres, B. (2004). New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0°28’S. Journal of Geophysical Research Atmospheres, 109(18), 0–17. https://doi.org/10.1029/2003JD004484 Francou, B., Vuille, M., Wagnon, P., Mendoza, J., & Sicart, J. E. (2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. Journal of Geophysical Research: Atmospheres, 108(5), 1–12. https://doi.org/10.1029/2002jd002959 Frank, F., McArdell, B. W., Huggel, C., & Vieli, A. (2015). The importance of entrainment and bulking on debris flow runout modeling: Examples from the Swiss Alps. Natural Hazards and Earth System Sciences, 15(11), 2569–2583. https://doi.org/10.5194/nhess-15-2569-2015 Frey, H., Huggel, C., Chisolm, R. E., Baer, P., McArdell, B., Cochachin, A., & Portocarrero, C. (2018). Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science, 6(November), 1–16. https://doi.org/10.3389/feart.2018.00210 Fujita, K., & Nuimura, T. (2011). Spatially heterogeneous wastage of Himalayan glaciers. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14011–14014. https://doi.org/10.1073/pnas.1106242108 Gagné, K., Rasmussen, M. B., & Orlove, B. (2014). Glaciers and society : attributions , perceptions , and valuations. 5(December), 793–808. https://doi.org/10.1002/wcc.315 GAPHAZ. (2017). Evaluación de peligros por glaciares y permafrost en regiones de montaña - Documento técnico de orientación. 72. Gardelle, J., Arnaud, Y., & Berthier, E. (2011). Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global and Planetary Change, 75(1–2), 47–55. https://doi.org/10.1016/j.gloplacha.2010.10.003 Giesbrecht, I., Tank, S., Del, J., Belluz, B., & Jackson, J. (2021). Sustained Impact of a Glacial Lake Outburst Flood on Winter Turbidity Regimes across the Land-Ocean Aquatic Continuum. Giraldéz, C. (2011). Glacier evolution in the South West slope of Nevado Hualcán (Cordillera Blanca, Perú). Heller, V., Hager, W. H., & Minor, H. (2009). Mitteilungen Basics and computation. Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., & Steltzer, H. I. (2019). Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 131–202. Hoffmann, D., Weggenmann, D., & Hoffmann, D. (2013). Climate change induced glacier retreat and risk management Glacial Lake Outburst Floods ( GLOFs ) in the Contact address. Huggel, C., Cochachin, A., Drenkhan, F., Fluixá-Sanmartín, J., Frey, H., García Hernández, J., Jurt, C., Muñoz, R., Price, K., & Vicuña, L. (2020). Glacier Lake 513, Peru: Lessons for early warning service development. WMO Bulletin, 69(1), 45–52. https://library.wmo.int/doc_num.php explnum_id=10223 Hürlimann, M., Copons, R., & Altimir, J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 78(3–4), 359–372. https://doi.org/10.1016/j.geomorph.2006.02.003 INEI (2017). Censo de Población y Viviendas. Instituto Nacional de Estadística e Informática del Gobierno de Perú (https://www.inei.gob.pe/). Iribarren Anacona, P., Mackintosh, A., & Norton, K. P. (2015). Hazardous processes and events from glacier and permafrost areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1), 2–21. https://doi.org/10.1002/esp.3524 Kaser, G., & Osmaston, H. A. (2002). Tropical Glaciers. Kougkoulos, I. (2019). Glacial lake outburst flood risk in the Bolivian Andes. Lateltin, O., Haemmig, C., Raetzo, H., & Bonnard, C. (2005). Landslide risk management in Switzerland. Landslides, 2(4), 313–320. https://doi.org/10.1007/s10346-005-0018-8 Lliboutry, L., Arnao, B. M., Pautre, A., & Schneider, B. (1977). Glaciological Problems Set by the Control of Dangerous Lakes in Cordillera Blanca, Peru. Journal of Glaciology, 19(81), 673–674. https://doi.org/10.3189/s0022143000029610 Loriaux, T., & Casassa, G. (2013). Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change, 102, 33–40. https://doi.org/10.1016/j.gloplacha.2012.12.012 Majeed, U., Rashid, I., Sattar, A., Allen, S., Stoffel, M., Nüsser, M., & Schmidt, S. (2021). Science of the Total Environment Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Science of the Total Environment, 756, 144008. https://doi.org/10.1016/j.scitotenv.2020.144008 McCoy, S. W., Tucker, G. E., Kean, J. W., & Coe, J. A (2013). Field measurement of basal forces generated by erosive debris flows. Journal of Geophysical Research: Earth Surface, 118(2), 589–602. https://doi.org/10.1002/jgrf.20041 Mergili, M., Schneider, D., Worni, R., & Schneider, J. F. (2011). Glacial lake outburst floods in the Pamir of Tajikistan: Challenges in prediction and modelling. 973–982. https://doi.org/10.4408/IJEGE.2011-03.B-106 Muñoz, R., Huggel, C., Frey, H., Cochachin, A., & Haeberli, W. (2020). Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru. In Earth Surface Processes and Landforms (Vol. 45, Issue 7). https://doi.org/10.1002/esp.4826 Naciones Unidas. (2014). Manual para la Evaluación de Desastres. Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., & Liu, S. (2018). An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 308(December), 91–106. https://doi.org/10.1016/j.geomorph.2018.02.002 Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., & Song, C. (2017). A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189, 1–13. https://doi.org/10.1016/j.rse.2016.11.008 Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering, P., & Fujita, K. (2015). The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere, 9(3), 849–864. https://doi.org/10.5194/tc-9-849-2015 O´Brien, J., & Pierre, J. (1988). Laboratory Analysis of Mudflow Properties. 114(8), 877–887. O’Brien, J. (1997). Debris-Flow termination (or deposition) processes. In: Debris-Flow Hazard Mitigation. Me- chanics, Prediction and Assessment. Proceedings of first international Conference. ASCE American Soci- ety of Civil Engineers. O’Brien J.S. (2000). FLO-2D User’s Manual, Versión 2000. 10, Nutrioso, Arizona. ONERN. (1980). Inventario Nacional de Lagunas y Represamientos. Petrov, M. A., Sabitov, T. Y., Tomashevskaya, I. G., Glazirin, G. E., Chernomorets, S. S., Savernyuk, E. A., Tutubalina, O. V., Petrakov, D. A., Sokolov, L. S., Dokukin, M. D., Mountrakis, G., Ruiz-Villanueva, V., & Stoffel, M. (2017). Glacial lake inventory and lake outburst potential in Uzbekistan. Science of the Total Environment, 592, 228–242. https://doi.org/10.1016/j.scitotenv.2017.03.068 Portocarrero, C. (2014). The Glacial Lake Handbook. High Mountain Glacial Watershed Program. USAID_Technical Report, February, 80. http://highmountains.org/content/glacial-lake-handbook-cesar-portocarrero-rodriguez Rafael Córdova, J., & González Sanabria, M. (2003). Estimación de los volúmenes y caudales máximos que produjeron los aludes torrenciales ocurridos en diciembre de 1999 en cuencas del litoral central del estado Vargas, Venezuela. Acta Cientifica Venezolana, 54(SUPPL.1), 33–48. Raïmat, C., Riera, E., Graf, C., Luis-Fonseca, R., Fañanas-Aguilera, C., & Hürlimann, M. (2013). Experiencia de la aplicación de RAMMS para la modelización de flujo tras la aplicación de las soluciones flexibles VX en el Barranc de Portainé. VIII Simposio Nacional Sobre Taludes y Laderas Inestables, 1131–1144. Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65–66, 31–47. https://doi.org/10.1016/S1040-6182(99)00035-X Rickenmann, D. (1999). Empirical relationships for Debris Flow. Natural Hazards, 19(47), 47–77. ftp://ftp.wsl.ch/pub/rickenmann/Rickenmann-pdf/1999/Rickenmann-1999_NH.pdf Salm B., Burkard A. and Gubler H. 1990: Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen. Mitteilung 47, Eidg. Institut für Schnee- und Lawinenforschung SLF. Salm B. 1993: Flow, flow transition and runout distances of flowing avalanches. In: Annals of Glaciology 18, 221-226. Sancho de Pablo, C. (2021). GLOF hazard associated with glacier retreat in the Cordillera Blanca, Peru : a case study on Laguna 513. Schneider, D., Huggel, C., Cochachin, A., Guillén, S., & García, J. (2014). Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Advances in Geosciences, 35(October 2018), 145–155. https://doi.org/10.5194/adgeo-35-145-2014 Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939–945. https://doi.org/10.1038/s41558-020-0855-4 Sugiyama, S., Bauder, A., Huss, M., Riesen, P., & Funk, M. (2008). Triggering and drainage mechanisms of the 2004 glacier-dammed lake outburst in Gornergletscher, Switzerland. Journal of Geophysical Research: Earth Surface, 113(4), 1–11. https://doi.org/10.1029/2007JF000920 Takahashi, K. (2017). Generación de información y monitoreo del Fenómeno El Niño. 4, 4–8. Trenberth, K. E., & Caron, J. M. (2000). The southern oscillation revisited: Sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13(24), 4358–4365. https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2 Úbeda, J. (2011). El impacto del cambio climático en los glaciares del complejo volcánico Nevado Coropuna, Cordillera Occidental. Tesis doctoral. In Universidad Complutense de Madrid. Úbeda, Jose, Marcos, J. De, Schimmelpfennig, I., Vásquez, E., Concha, R., Braucher, R., Masías, P., Bustamante, M., Gómez, R., Team, A., Iparraguirre, J., Barrientos, Í., Luna, G., & Astete, I. (2019). Teleconnections Between Boreal Cooling and Tropical Glaciers in the Cordillera Blanca (PERU). VII Conference of the Iberian Section of the International Permafrost Association, 2013, 1. Úbeda Palenque, J., Concha Niño de Guzmán, R., Vásquez Choque, P., Masías Álvarez, P., & Iparraguirre Ayala, J. (2018). Prospección de edades 36Cl de la última máxima expansión de los glaciares y el comienzo de la deglaciación al noreste del complejo volcánico Nevado Coropuna (Región Arequipa). 123, 97–123. www.sgp.org.pe UNISDR. (2015). Sendai Framework for Disaster Risk Reduction 2015 - 2030. Valderrama, P., & Vilca, O. (2010). Dinámica del aluvión de la Laguna 513, Cordillera Blanca, Ancash Peru - primeros alcances. XV Congreso Peruano de Geologia., 9, 336–341. Veh, G., Korup, O., & Walz, A. (2020). Hazard from Himalayan glacier lake outburst floods. 117(2), 907–912. https://doi.org/10.1073/pnas.1914898117 Vuille, M., Bradley, R. S., & Keimig, F. (2000). Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic Sea Surface temperature anomalies. Journal of Climate, 13(14), 2520–2535. https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2 Wang, W., Gao, Y., Iribarren, P., Lei, Y., Xiang, Y., & Zhang, G. (2017). Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley , Central Himalayas Geomorphology Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley , Central Himalayas. Geomorphology, November. https://doi.org/10.1016/j.geomorph.2015.08.013 Westoby, Matt., Glasser, NF., Brasington, J., Hambrey, MJ., Quincey, DJ. & Reynolds, J. (2014). Modelling outburst floods from moraine-dammed glacial lakes. October 2017. https://doi.org/10.1016/j.earscirev.2014.03.009 Wilson, R., Harrison, S., Reynolds, J., Hubbard, A., Glasser, N. F., Wündrich, O., Anacona, P. I., Mao, L., & Shannon, S. (2019). Geomorphology The 2015 Chileno Valley glacial lake outburst flood , Patagonia. Geomorphology, 332, 51–65. https://doi.org/10.1016/j.geomorph.2019.01.015 Worni, R., Huggel, C., Clague, J. J., Schaub, Y., & Stoffel, M. (2014). Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology, 224(November 2017), 161–176. https://doi.org/10.1016/j.geomorph.2014.06.031 Wymann von Dach, S., Bachmann, F., Alcántara, I., Fuchs, S., Margreth, K., Mishra, A., & Sötz, E. (2017). Safer lives and -livelihoods in mountains. Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., & Joswiak, D. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580 Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., & Stoffel, M. (2021). The 2020 glacial lake outburst flood at Jinwuco , Tibet : causes , impacts , and implications for hazard and risk assessment. January, 1–28.