Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study



Downloads per month over past year

Sanchéz Beltran, Maria del Carmen and Velapatiño, Angela and Llama Palacios, Arancha and Valdés, Alberto and Cifuentes, Alejandro and Ciudad Cabañas, María José and Collado Yurrita, Luis Rodolfo (2022) Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study. Molecular Oral Microbiology, 37 (2). pp. 81-96. ISSN 2041-1006

[thumbnail of Molecular Oral Microbiology - 2022 - S nchez - Metataxonomic and metabolomic evidence of biofilm homeostasis disruption.pdf]
Creative Commons Attribution Non-commercial No Derivatives.


Official URL:


The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta-taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis (UHPLC/Q-TOF-MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p < 0.001), by increase Fusobacterium (p < 0.001) and Sphingomonas (p = 0.024), while suffered a decrease in Actinobacteria (p < 0.001). As a consequence of the shift in microbiota composition, significant extracellular metabolomics changes were detected, showed 59 metabolites of the 120 identified significantly different in terms of relative abundance between the cariogenic/commensal biofilms (Rate of change > 2 and FDR < 0.05). Forty-two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, l-methionine, glutamic acid, and phenylalanine derivatives.

Item Type:Article
Additional Information:

CRUE-CSIC (Acuerdos Transformativos 2022)

Uncontrolled Keywords:amino-acids, biofilms, caries, metabolomics, metataxonomics, peptides, Streptococcus
Subjects:Medical sciences > Medicine > Endocrinology
Medical sciences > Medicine > Dentistry
ID Code:72609
Deposited On:31 May 2022 14:42
Last Modified:01 Jun 2022 08:41

Origin of downloads

Repository Staff Only: item control page