Publication:
A new approach to analyze the independence of statistical tests of randomness

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-04-02
Authors
Almaraz Luengo, Elena
Leiva Cerna, Marcos Brian
Hernández Castro, Julio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
One of the fundamental aspects when working with batteries of statistic tests is that they should be as efficient as possible, i.e. that they should check the properties and do so in a reasonable computational time. This assumes that there are no tests that are checking the same properties, i.e. that they are not correlated. One of the most commonly used measures to verify the interrelation between variables is the Pearson’s correlation. In this case, linear dependencies are checked, but it may be interesting to verify other types of non-linear relationships between variables. For this purpose, mutual information has recently been proposed, which measures how much information, on average, one random variable provides to another. In this work we analyze some well-known batteries by using correlation analysis and mutual information approaches.
Description
Unesco subjects
Keywords
Citation
[1] S. Kumar, P. Tiwari, M. Zymbler, Internet of things is a revolutionary approach for future technology enhancement: a review, J. Big Data 6 (1) (2019) 1–21 . [2] W. Ejaz, A. Anpalagan, M.A. Imran, M. Jo, M. Naeem, S.B. Qaisar, W. Wang, Internet of things (iot) in 5g wireless communications, IEEE Access 4 (2016) 10310–10314 . [3] L.E. Bassham, A.L. Rukhin, J. Soto, J.R. Nechvatal, M.E. Smid, E.B. Barker, S.D. Leigh, M. Levenson, M. Vangel, D.L. Banks, N.A. Heckert, J.F. Dray, S. Vo, SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Technical Report, National Institute of Standards & Technology, Gaithersburg, MD, USA, 2010 . [4] R. Álvarez, J.J. Climent, L. Tortosa, A. Zamora, An efficient binary sequence generator with cryptographic applications, Appl. Math. Comput. 167 (1) (2005) 16–27 https://www.sciencedirect.com/science/article/pii/S0096300304004709 , doi: 10.1016/j.amc.2004.06.065 . [5] I. Baturone, M.A. Prada-Delgado, S. Eiroa, Improved generation of identifiers, secret keys, and random numbers from srams, IEEE Trans. Inf. Forensics Secur. 10 (2) (2015) 2653–2668, doi: 10.1109/TIFS.2015.2471279 . [6] M.R. Khalili-Shoja, G.T. Amariucai, S. Wei, J. Deng, Secret common randomness from routing metadata in ad hoc networks, IEEE Trans. Inf. Forensics Secur. 11 (8) (2016) 1674–1684, doi: 10.1109/TIFS.2016.2550424 . [7] D. Hurley-Smith, J. Hernández-Castro, Certifiably biased: an in-depth analysis of a common criteria eal4+ certified trng, IEEE Trans. Inf. Forensics Secur. 13 (4) (2018) 1031–1041, doi: 10.1109/TIFS.2017.2777342 . [8] J. Choi, Physical layer security for channel-aware random access with opportunistic jamming, IEEE Trans. Inf. Forensics Secur. 12 (11) (2017) 2699–2711, doi: 10.1109/TIFS.2017.2714842 . [9] J. Tang, L. Jiao, K. Zeng, H. Wen, K.-Y. Qin, Physical layer secure mimo communications against eavesdroppers with arbitrary number of antennas, IEEE Trans. Inf. Forensics Secur. 16 (2021) 466–481, doi: 10.1109/TIFS.2020.3015548 . [10] J. Laeuchli, Y. Ramırez-Cruz, R. Trujillo-Rasua, Analysis of centrality measures under differential privacy models, Appl. Math. Comput. 412 (2022) 126546 https://www.sciencedirect.com/science/article/pii/S0 09630 03210 06305 , doi: 10.1016/j.amc.2021.126546 . [11] S.G. Gedam, S.T. Beaudet, Monte carlo simulation using excel(r) spreadsheet for predicting reliability of a complex system, in: Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055), 2000, pp. 188–193, doi: 10.1109/RAMS.2000.816305 . [12] K. Ching-Jing, T. Hui-Chin, A revised forward and backward heuristic for two-term multiple recursive random number generators, Appl. Math. Comput. 185 (1) (2007) 240–246 https://www.sciencedirect.com/science/article/pii/S0096300306008551 , doi: 10.1016/j.amc.2006.06.093. [13] R. Kawai, H. Masuda, On simulation of tempered stable random variates, J. Comput. Appl. Math. 235 (8) (2011) 2873–2887 https://www.sciencedirect.com/science/article/pii/S0377042710006643, doi: 10.1016/j.cam.2010.12.014. [14] A.M. Gergely, B. Crainicu, A succinct survey on (pseudo)-random number generators from a cryptographic perspective, in: 2017 5th International Symposium on Digital Forensic and Security (ISDFS), 2017, pp. 1–6, doi: 10.1109/ISDFS.2017.7916504 . [15] P. Wang, F. You, S. He, Design of broadband compressed sampling receiver based on concurrent alternate random sequences, IEEE Access 7 (2019) 135525–135538, doi: 10.1109/ACCESS.2019.2942687 . [16] A.I. Gómez, D. Gómez-Pérez, F. Pillichshammer, Secure pseudorandom bit generators and point sets with low star-discrepancy, J. Comput. Appl. Math. 396 (2021) 113601 https://www.sciencedirect.com/science/article/pii/S0377042721002211 , doi: 10.1016/j.cam.2021.113601 . [17] M. Haahr, Introduction to randomness and random numbers, 1999, https://www.random.org/randomness/ . [18] M.S. Turan, A. Doganaksoy, B. S., On independence and sensitivity of statistical randomness tests, in: S.W. Golomb, M.G. Parker, A . Pott, A . Winterhof (Eds.), Sequences and Their Applications - SETA 2008, volume 4, 2008, pp. 18–29 . [19] P. Hellekalek, S. Wegenkittl, Empirical evidence concerning aes, ACM Trans. Model. Comput. Simul. 13 (4) (2003) 322–333, doi: 10.1145/945511.945515 . [20] P. Burciu, E. Simion, A systematic approach of nist statistical tests dependencies, J. Electr. Eng. Electr. Control Comput. Sci. 5 (1) (2019) 1–6 https: //jeeeccs.net/index.php/journal/article/view/113 . [21] J.A. Karell-Albo, C.M. Legón-Pérez, E.J. Madarro-Capó, O. Rojas, G. Sosa-Gómez, Measuring independence between statistical randomness tests by mutual information, Entropy 22 (741) (2020) 1–18, doi: 10.3390/e22070741 . [22] L. Fan, H. Chen, S. Gao, A general method to evaluate the correlation of randomness tests, Lect. Notes Comput. Sci. 8267 (2014) 52–62, doi: 10.1007/978-3-319-05149-9_4 . [23] A. Doganaksoy, F. Sulak, M. Uguz, O. Seker, Z. Akcengiz, Mutual correlation of nist statistical randomness tests and comparison of their sensitivities on transformed sequences, Turkish J. Electr. Eng. Comput. Sci. 25 (2017) 655–665, doi: 10.3906/elk-1503-214 . [24] F. Sulak, M. Uguz, O. Koçak, A. Doganaksoy, On the independence of statistical randomness tests included in the nist test suite, Turkish J. Electr. Eng. Comput. Sci. 25 (2017) 3673–3683, doi: 10.3906/elk- 1605- 212 . [25] C.E. Shannon, W. Weaver, The mathemtical theory of communication, University of Illinois Press, Urbana., 1962 . [26] T.M. Cover, Elements of information theory, 2nd ed., John Wiley & Sons., 2006 . [27] J.A. Pardo, Some applications of the useful mutual information, Appl. Math. Comput. 72 (1) (1995) 33–50 https://www.sciencedirect.com/science/article/pii/00963003900162W , doi: 10.1016/0 096-30 03(94)0 0162-W . [28] T.O. Kvålseth, On normalized mutual information: measure derivations and properties, Entropy 19 (11) (2017), doi: 10.3390/e19110631 . https://www. mdpi.com/1099-4300/19/11/631 [29] R.G. Brown, D. Eddelbuettel, D. Bauer, Dieharder: a random number test suite (version 3.31.1), 2014, https://webhome.phy.duke.edu/∼rgb/General/dieharder.php . [30] G. Marsaglia, The marsaglia random number cdrom including the diehard battery of tests of randomness, 1995, https://web.archive.org/web/20160220101002/ . [31] Z. Gutterman, B. Pinkas, T. Reinman, Analysis of the linux random number generator, in: 2006 IEEE Symposium on Security and Privacy (S P’06), 2006, pp. 15pp.–385, doi: 10.1109/SP.2006.5 . [32] L. Dorrendorf, Z. Gutterman, B. Pinkas, Cryptanalysis of the random number generator of the windows operating system, ACM Transactions on Information and System Security (TISSEC) 13 (1) (2009) 1–32 . [33] G. Marsaglia, W.W. Tsang, Some difficult-to-pass tests of randomness, J Stat Softw 7 (3) (2002) 1–9 . [34] P. L’ecuyer, R. Simard, Testu01: ac library for empirical testing of random number generators, ACM Transactions on Mathematical Software (TOMS) 33 (4) (2007) 1–40 .
Collections