Publication:
The homogeneous geometries of complex hyperbolic space

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2021
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We describe the holonomy algebras of all canonical connections and their action on complex hyperbolic spaces CH(n) in all dimensions (n ∈ N). This thorough investigation yields a formula for all Kähler homogeneous structures on complex hyperbolic spaces. Finally, we have related the belonging of the homogeneous structures to the different Tricerri and Vanhecke’s (or Abbena and Garbiero’s) orthogonal and irreducible U(n)-submodules with concrete and determined expressions of the holonomy.
Description
Keywords
Citation
[1] E. Abbena, S. Garbiero. Almost hermitian homogeneous structures, Proc. Edimb.Math. Soc. 31 (2) (1988), 375-395. [2] W. Ambrose, I. M. Singer. On homogeneous Riemannian manifolds, Duke Math. J.25 (4) (1958), 647-669. [3] W. Batat, P. M. Gadea and J. A. Oubiña. Homogeneous pseudo-Riemannian structures of linear type, J. Geom. Phys. 61 (2011), 745-764. [4] A. L. Besse. Einstein manifolds, Springer-Verlag, Berlin Heidelberg (1987). [5] G. Calvaruso, M. Castrillón López. Pseudo-Riemannian Homogeneous Structures, Developments in Mathematics, Springer (2019). [6] J. L. Carmona Jiménez, M. Castrillón López. The Ambrose-Singer theorem for general homogeneous spaces with applications to symplectic geometry, Preprint arXiv:2001.06254 (2020). [7] M. Castrillón López, P. Gadea, A. F. Swann. Homogeneous structures on real and complex hyperbolic spaces, Illinois J. of Math. 53 (2) (2009), 561-574. [8] M. Castrillón López, P. Gadea, A. F. Swann. The homogeneous geometries of real hyperbolic space, Mediterranean J. of Math. 10 (2) (2013). [9] J.C. Díaz-Ramos, M. Domínguez-Vázquez, V. Sanmartín-López. Isoparametric hypersurfaces in complex hyperbolic spaces, Adv. Math. 314 (2017), 756-–805. [10] P. M. Gadea, A. Montesinos Amilibia, J. Muñoz Masqué. Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc. 128 (2000), 87-94. [11] P. M. Gadea, J. A. Oubiña. Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. 48 (2005), 375–387. [12] W. M. Goldman, Complex hyperbolic geometry, Oxford University Press (1999). [13] S. Kobayashi, K. Nomizu. Foundations of Differential Geometry, John Wiley and Sons, New York, Vol. 1,2 (1963,1969). [14] O. Kowalski. Generalized Symmetric Spaces, Volume 805 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg (1980). [15] K. Nomizu. Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. [16] G. Pipoli, Inverse mean curvature flow in complex hyperbolic space, Ann. Sci. Ec. Norm. Supér. 52 (2019), no. 5, 1107—1135. [17] B. Schmidt, K. Shankar, R. Spatzier. Almost isotropic Kähler manifolds, J. Reine Angew. Math. 767 (2020), 1-–16. 20 [18] F. Tricerri, L. Vanhecke, Homogeneous structures on Riemannian manifolds, Lon. Math. Soc. Lecture Notes Series 83. Cambridge University Press (1983). [19] D. Witte, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics. Proceedings of the conference held at the University of Wisconsin, Madison, Wisconsin, May 22–June 1, 1988 (G. Benkart and J. M. Osborn, eds.), Contemporary Mathematics, vol. 110, Amer. Math. Soc., Providence, RI, (1990), 309–313. [20] K. Wong. On effective existence of symmetric differentials of complex hyperbolic space forms, Math. Z. 290 (2018), no. 3-4, 711—733.
Collections