Weak geodesics on prox-regular subsets of Riemannian manifolds

Impacto

Downloads

Downloads per month over past year



Ferrera Cuesta, Juan and Pouryayevali, Mohamad R. and Radmanesh, Hajar (2022) Weak geodesics on prox-regular subsets of Riemannian manifolds. (Unpublished)

[thumbnail of ferrera_weak_byncsa.pdf]
Preview
PDF
Creative Commons Attribution Non-commercial Share Alike.

215kB


Abstract

We give a definition of weak geodesics on prox-regular subsets of Riemannian manifolds as continuous curves with some weak regularities. Then obtaining a suitable Lipschitz constant of the projection map, we characterize weak geodesics on a prox-regular set with assigned end points as viscosity critical points of the energy functional.


Item Type:Article
Uncontrolled Keywords:Prox-regular sets; ϕ-convex sets; Sobolev spaces; Metric projection; Nonsmooth analysis; Riemannian manifolds
Subjects:Sciences > Mathematics > Mathematical analysis
ID Code:73270
Deposited On:30 Jun 2022 10:06
Last Modified:01 Jul 2022 07:40

Origin of downloads

Repository Staff Only: item control page