Publication:
Insights on the Cesàro operator: shift semigroups and invariant subspaces

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2022-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A closed subspace is invariant under the Cesàro operator C on the classical Hardy space H2 (D) if and only if its orthogonal complement is invariant under the C0-semigroup of composition operators induced by the affine maps φt(z) = e−t z + 1 − e −t for t ≥ 0 and z ∈ D. The corresponding result also holds in the Hardy spaces Hp(D) for 1 < p < ∞. Moreover, in the Hilbert space setting, by linking the invariant subspaces of C to the lattice of the closed invariant subspaces of the standard right-shift semigroup acting on a particular weighted L 2 -space on the line, we exhibit a large class of non-trivial closed invariant subspaces and provide a complete characterization of the finite codimensional ones, establishing, in particular, the limits of such an approach towards describing the lattice of all invariant subspaces of C. Finally, we present a functional calculus which allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the square root of C and discuss its invariant subspaces.
Description
Keywords
Citation
[1] A. Aleman, A class of integral operators on spaces of analytic functions. Topics in complex analysis and operator theory, 3–30, Univ. Málaga, Málaga, 2007. [2] A. Aleman and B. Korenblum, Volterra invariant subspaces of Hp. Bull. Sci. Math., 132 (2008), no. 6, 510–528. [3] A. Aleman and A.G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (2) (1997) 337-356. [4] A.G. Arvanitidis and A.G. Siskakis, Cesàro operators on the Hardy spaces of the half-plane. Canad. Math. Bull. 56 (2013), no. 2, 229–240. [5] E. Berkson and H. Porta, Semigroups of analytic functions and composition operators. Michigan Math. J. 25 (1978), no. 1, 101–115. [6] F. Bracci, M. D. Contreras and S. Díaz-Madrigal, Continuous semigroups of holomorphic self-maps of the unit disc, Springer Monographs in Mathematics (2020). [7] J.R. Carmo and S.W. Noor, Universal composition operators. J. Operator Theory 87 (2022), no. 1, 137–156. [8] C.C. Cowen, Subnormality of the Cesàro operator and a semigroup of composition operators, Indiana Univ. Math. J. 33 (2) (1984) 305–318. [9] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. [10] Y. Domar, Translation invariant subspaces of weighted lp and Lp spaces, Math. Scand. 49 (1981), 133–144. [11] Y. Domar, Extensions of the Titchmarsh convolution theorem with application in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), 288–300. [12] Y. Domar, A solution of the translation-invariant subspace problem for weighted Lp on R, R + or Z, Radical Banach algebras and automatic continuity, 214–226, Lecture Notes in Math., 975, Springer, 1983. [13] Y. Domar, Translation-invariant subspaces of weighted Lp, Contemp. Math., 91, Amer. Math. Soc., Providece, RI, 1989. [14] N. Dunford and J.T. Schwartz, Linear operators. Part I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988. [15] C. Foia ̧s, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. 14 (1963) 341–349. [16] P.A. Fuhrmann, Linear systems and operators in Hilbert space. McGraw-Hill International Book Co., New York, 1981. [17] E. A. Gallardo-Gutierrez and J.R. Partington, Invariant subspaces for translation, dilation and multiplication semigroups. Journal d’Analyse Math., 107 (2009), 65–78. [18] E. A. Gallardo-Gutierrez and J.R. Partington, C0-semigroups of 2-isometries and Dirichlet spaces. Rev. Mat. Iberoam., 34 (2018), no. 3, 1415–1425. [19] E. A. Gallardo-Gutierrez, J.R. Partington and D.J. Rodríguez, An extension of a theorem of Domar on invariant subspaces. Acta Sci. Math. (Szeged) 83 (2017), no. 1–2, 271–290. [20] E. A. Gallardo-Gutiérrez, J.R. Partington and D.J. Rodríguez, Non-standard translation-invariant subspaces for weighted L2 on R+, Harmonic analysis, function theory, operator theory, and their applications, 125–132, Theta Ser. Adv. Math., 19, (2017). [21] M. Haase, The functional calculus for sectorial operators. Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. [22] T.L. Kriete and D. Trutt, The Cesàro operator in l2 is subnormal. Amer. J. Math. 93 (1971), 215–225. [23] T. L. Kriete and D. Trutt, On the Cesàro operator. Indiana Univ. Math. J. 24 (1974/75), 197–214. [24] K. Laursen and M. Neumann, An introduction to local spectral theory, London Math. Soc. Monographs, The Clarendon Press, Oxford University Press, New York, 2000. [25] P.D. Lax, Translation invariant subspaces, Acta Math. , 101 (1959), 163–178. [26] J. Mashreghi, M. Ptak and W.T. Ross, Square roots of some classical operators, preprint, 2021. https://arxiv.org/abs/2109.13688 [27] V.G. Miller, T.L. Miller and R.C. Smith, Bishop’s property (β) and the Cesàro operator, J. London Math. Soc. (2) 58 (1) (1998) 197–207. [28] N.K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. [29] N. K. Nikolskii, Unicellularity and non-unicellularity of weighted shift operators, Dokl. Ak. Nauk SSR 172 (1967), 287–290. [30] A.-M. Persson, On the spectrum of the Ces`aro operator on spaces of analytic functions, J. Math. Anal. Appl. 340 (2008) 1180–1203. [31] W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill, New York, 1987. [32] A.G. Siskakis, Composition semigroups and the Cesàro operator on Hp, J. London Math. Soc. (2) 36 (1987), 153–164 [33] A.G. Siskakis, The Ces`aro operator is bounded on H1, Proc. Amer. Math. Soc. 110 (1990), 461–462.
Collections