¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Almost continuous Sierpinski-Zygmund functions under different set-theoretical assumptions



Downloads per month over past year

Krzysztof, Chris and Natkaniec, T. and Rodríguez-Vidanes, D.L. (2022) Almost continuous Sierpinski-Zygmund functions under different set-theoretical assumptions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas volume, 117 (19). ISSN 1579-1505

[thumbnail of s13398-022-01347-w.pdf]
Creative Commons Attribution.


Official URL: https://doi.org/10.1007/s13398-022-01347-w


A function f : R → R is: almost continuous in the sense of Stallings, f ∈ AC, if each open set G ⊂ R2 containing the graph of f contains also the graph of a continuous function g : R → R; Sierpiński-Zygmund, f ∈ SZ (or, more generally, f ∈ SZ(Bor)), provided its restriction f M is discontinuous (not Borel, respectively) for any M ⊂ R of cardinality continuum. It is known that an example of a Sierpiński-Zygmund almost continuous function f : R → R (i.e., an f ∈ SZ ∩ AC) cannot be constructed in ZFC; however, an f ∈ SZ ∩ AC exists under the additional set-theoretical assumption cov(M) = c, that is, that R cannot be covered by less than c-many meager sets. The primary purpose of this paper is to show that the existence of an f ∈ SZ∩AC is also consistent with ZFC plus the negation of cov(M) = c. More precisely, we show that it is consistent with ZFC+cov(M) < c (follows from the assumption that non(N ) < cov(N ) = c) that there is an f ∈ SZ(Bor)∩AC and that such a map may have even stronger properties expressed in the language of Darboux-like functions. We also examine, assuming either cov(M) = c or non(N ) < cov(N ) = c, the lineability and the additivity coefficient of the class of all almost continuous Sierpiński-Zygmund functions. Several open problems are also stated.

Item Type:Article
Additional Information:

CRUE-CSIC (Acuerdos Transformativos 2022)

Uncontrolled Keywords:Additivity Almost continuous functions; Covering of category; Covering of measure; Lineability; Random reals; Sierpiński-Zygmund functions
Palabras clave (otros idiomas):Espacios vectoriales
Subjects:Sciences > Mathematics
Sciences > Mathematics > Mathematical analysis
ID Code:73501
Deposited On:07 Jul 2022 11:28
Last Modified:21 Nov 2022 09:49

Origin of downloads

Repository Staff Only: item control page