Publication:
On the relation between completely bounded and (1, cb)- summing maps with applications to quantum xor games

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-09-13
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we show that, given a linear map from a general operator space into the dual of a C∗ -algebra, its completely bounded norm is upper bounded by a universal constant times its (1, cb)-summing norm. This problem is motivated by the study of quantum XOR games in the field of quantum information theory. In particular, our results imply that for such games entangled strategies cannot be arbitrarily better than those strategies using one-way classical communication.
Description
CRUE-CSIC (Acuerdos Transformativos 2022)
Keywords
Citation
[1] R. Cleve, P. Hoyer, B. Toner and J. Watrous. Consequences and limits of nonlocal strategies. Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004., pp. 236-249 (2004). [2] B. Collins, I. Nechita. Random quantum channels I: graphical calculus and the Bell state phenomenon. Comm. Math. Phys. 297, no. 2 345-370 (2010). [3] B. Collins, I. Nechita. Random quantum channels II: entanglement of random subspaces, Renyi entropy estimates and additivity problems. Adv. Math. 226, no. 2, 1181-201 (2011). [4] J. Diestel, H. Jarchow, A. Tonge. Absolutely Summing Operators, Cambridge Stud. Adv. Math., vol. 43, Cambridge Univ. Press, Cambridge, 1995. [5] E.G. Effros, Z.J. Ruan, A new approach to operator spaces. Can. Math. Bull. 34, 329-337 (1991). [6] E. G. Effros, Z.-J. Ruan. Operator spaces, volume 23, London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000. [7] U. Haagerup, The Grothendieck inequality for bilinear forms on C∗-algebras, Adv. Math.56, no. 2, 93-116 (1985). [8] U. Haagerup, M. Musat. The Effros-Ruan conjecture for bilinear forms on C∗-algebras. Invent. Math.174, 139- 163 (2008). [9] S. Harris, L. Gao and M. Junge, Quantum teleportation and super-dense coding in operator algebras. Int. Math. Res. Not. (2019). [10] S. Heinrich, Ultraproducts in Banach space theory. J. fur die reine und Angew. Math. 313 72-104 (1980). [11] W. Helton, K. P. Meyer, V. I. Paulsen, M. Satriano, Algebras, Synchronous Games and Chromatic Numbers of Graphs, New York J. Math. 25, 328-361 (2019). [12] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen. MIP∗=RE. Available in arXiv:2001.04383. [13] M. Junge, Factorization Theory for Operator Spaces, Habilitationsschrift, Kiel (1996). [14] M. Junge, Embedding of the operator space OH and the logarithmic “little Grothendieck in-equality”. Invent. Math.161(2005), 225-286 (2005). [15] M. Junge, C. Palazuelos, CB-norm estimates for maps between noncommutative Lp-spaces and quantum channel theory. Int. Math. Res. Not. (3) 875-925 (2016). [16] M. Junge, C. Palazuelos, I. Villanueva. Classical versus quantum communication in XOR games. Quantum Inf. Process. 17, 117 (2018). [17] M. Junge, J. Parcet, Maurey’s factorization theory for operator spaces, Math. Ann. 347, 299-338 (2010). [18] M. Junge, G. Pisier, Bilinear forms on exact operator spaces and B(H) ⊗ B(H). GAFA, 5 (2), 329–363 (1995). [19] M. Lupini, L. Mancinska, V. I. Paulsen, D. E. Roberson, G. Scarpa, S. Severini, I. G. Todorov, A. Winter, Perfect strategies for non-signalling games, Math. Phys. Anal. Geom., vol. 23, 7 (2020). [20] M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press (2010). [21] C. Palazuelos and T. Vidick. Survey on nonlocal games and operator space theory. J. Math. Phys., 57(1): 015220 (2016). [22] V. I. Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. [23] V. I. Paulsen, S. Severini, D. Stahlke, I. G. Todorov and A. Winter, Estimating quantum chromatic numbers, J. Funct. Anal. 270, no. 6, 2188-2222 (2016). [24] G. Pisier, Grothendieck’s theorem for noncommutative C∗ -algebras, With an appendix on Grothendieck’s constants, J. Funct. Anal. 29, no. 3, 397-415 (1978). [25] G. Pisier, The operator Hilbert space OH, complex interpolation, and tensor norms. Providence R.I.: American mathematical society (1996). [26] G. Pisier, Non-Commutative Vector Valued Lp-Spaces and Completely p-Summing Maps, Asterisque, 247 (1998). [27] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces. Providence R.I.: American mathematical society (1986). [28] G. Pisier, An Introduction to Operator Spaces, London Math. Soc. Lecture Notes Series 294, Cambridge University Press, Cambridge (2003). [29] G. Pisier, D. Shlyakhtenko, Grothendieck’s theorem for operator spaces. Invent. Mat 150, 185-217 (2002). [30] O. Regev, T. Vidick. Elementary proofs of Grothendieck theorems for completely bounded norms. J. Oper. Theory 71, no. 2, 491-506 (2014). [31] O. Regev, T. Vidick, Quantum XOR games. ACM Transactions on Computation Theory (TOCT), 7 (4), (2015). [32] Z.-J. Ruan. Subspaces of C∗-algebras. J. Funct. Anal., 76(1), 217-230 (1988). [33] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific and Technical, (1989). [34] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal. 40, 127-150 (1981). [35] Q. Xu, Operator-space Grothendieck inequalities for noncommutative Lp-spaces. Duke Math.J.131, 525-574 (2006).
Collections