Publication:
Reconstruction of a Ross lost Cambrian Series 2 mixed siliciclastic–carbonate platform from carbonate clasts of the Shackleton Range, Antarctica

Research Projects
Organizational Units
Journal Issue
Abstract
The presence of archaeocyath-bearing clasts from Cenozoic tills and Cambrian Mount Wegener Formation reveal erosion of a hidden Cambrian carbonate platform in Shackleton Range, Antarctica. We provide microfacies, paleontological, diagenetic and tectonically induced fabric data from carbonate clasts which, in addition to available geochemical and geochronological data from Shackleton Range, allow the paleoenvironmental reconstruction of a lost Cambrian Series 2 mixed siliciclastic–carbonate platform that was developed and eroded during the Ross orogeny. Carbonate production was dominated by non-skeletal grains in possibly restricted platform-interior and oolitic shoal complex settings, while open subtidal sub-environments (calcimicrobe carpets, calcimicrobe–archaeocyath patch reefs, muddy bottoms) were dominated by a diverse calcimicrobe assemblage and/or by secondary to accessory heterozoan assemblage (archaeocyaths and other sponges, chancelloriids, hyoliths, coralomorphs, trilobites, echinoderms). We describe a Botoman assemblage with 34 archaeocyathan species among 12 existing archaeocyathan genera. A new archaeocyath family Shackletoncyathidae is proposed. New species ( Rotundocyathus glacius sp. nov., Buggischicyathus microporus gen. et sp. nov., Paragnaltacyathus hoeflei , Shackletoncyathus buggischi gen. et. sp. nov., Santelmocyathus santelmoi gen. et sp. nov., Wegenercyathus sexangulae gen. et sp. nov.) and Tabulaconus kordae coralomorph are reported from Antarctica for the first time. Archaeocyathan fauna share few species with contemporary fauna of South Australia (9) and even fewer with the Antarctic platforms of the Shackleton Limestone (2) or the Schneider Hills limestone (1). Similarity is greater with Antarctic allochthonous assemblages of Permo-Carboniferous tillites from Ellsworth Mountains (2), Cenozoic deposits from King George Island (4) or Weddell Sea (1). The Shackleton Range lost/hidden platform shows a distinct entity related with its tectonosedimentary evolution, in a possible back-arc basin on the Mozambique seaway during the E and W Gondwana amalgamation, which distinguishes it from those developed on the palaeo-Pacific margin of the E Antarctic craton.
Description
CRUE-CSIC (Acuerdos Transformativos 2022) Reconstruction of a Ross lost Cambrian Series 2 mixed siliciclastic–carbonate platform from carbonate clasts of the Shackleton Range, Antarctica Marta RODRÍGUEZ-MARTÍNEZ https://orcid.org/0000-0002-4363-5562 Werner BUGGISCH Silvia MENÉNDEZ Elena MORENO-EIRIS Antonio PEREJÓN
Keywords
Citation
References Adachi, N., Nakai, T., Ezaki, Y. & Liu, J. 2014. Late early Cambrian archaeocyath reefs in Hubei Province, South China: modes of construction during their period of demise. Facies 60, 703–17.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Álvaro, J. J., Vennin, E., Moreno-Eiris, E., Perejón, A. & Bechstädt, T. 2000. Sedimentary patterns across the lower-middle Cambrian transition in the Esla nappe (Cantabrian Mountains, northern Spain). Sedimentary Geology 137, 43–61.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Barnaby, R. J. & Read, J. F. 1990. Carbonate ramp to rimmed shelf evolution: lower to middle Cambrian Continental Margin, Virginia Appalachians. Geological Society of America Bulletin 102, 391–404.2.3.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bassett-Butt, L. 2016. Systematics, biostratigraphy and biogeography of brachiopods and other fossils from the middle Cambrian Nelson Limestone, Antarctica. Geologiska Föreningen i Stockholm Förhandlingar (GFF) 138, 377–92.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bedford, R. & Bedford, J. 1936. Further notes on Cyathospongia (Archaeocyathi) and other organisms from the lower Cambrian of Beltana, South Australia. Kyancutta Museum, Memoirs 3, 21–26.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bedford, R. & Bedford, J. 1937. Further notes on Archaeos (Pleospongia) from the lower Cambrian of south Australia. Kyancutta Museum, Memoirs 4, 27–38.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bedford, R. & Bedford, J. 1939. Development and classification of Archaeos (Pleospongia). Kyancutta Museum, Memoirs 6, 67–82.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bedford, R. & Bedford, W. R. 1934. New species of Archaeocyathinae and other organisms from the lower Cambrian of Beltana, South Australia. Kyancutta Museum, Memoirs 1, 1–7.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bedford, R. & Bedford, W. R. 1936. Further notes on Archaeocyathi (Cyathospongia) and other organisms from the lower Cambrian of Beltana, South Australia. Kyancutta Museum, Memoirs 2, 9–20.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A. & Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9, 1–364.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Betts, M. J., Paterson, J. R., Jacquet, S. M., Andrew, A. S., Hall, P. A., Jago, J. B., Jagodzinski, E. A., Preiss, W. V., Crowley, J. L., Brougham, T., Mathewson, C. P., García-Bellido, D. C., Topper, T. P., Skovsted, C. B. & Brock, G. A. 2018. Early Cambrian chronostratigraphy and geochronology of South Australia. Earth-Science Reviews 185, 498–543.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Billings, E. 1861. New Species of lower Silurian fossils: on some new or little known species of lower Silurian fossils from the Potsdam Group (Primordial Zone). Geological Survey of Canada 1, 1–24.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Boger, S. D. 2011. Antarctica – before and after Gondwana. Gondwana Research 19, 335–71.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Boger, S. D. & Miller, J. M. 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian orogeny: the cause and effect of an early Cambrian reconfiguration of plate motions. Earth and Planetary Science Letters 219, 35–48.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Bornemann, J. G. 1884. Bericht über die fortsetzung seiner untersuchungen cambrischer archaeocyathus-formen und verwandter organismen von der insel sardinien. Deutsche Geologische Gesellschaft, Zeitschrift 36, 702–06.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Brock, G. A., Engelbretsen, M. J., Jago, J. B., Kruse, P. D., Laurie, J. R., Shergold, J. H., Shi, G. R. & Sorauf, J. E.. 2000. Palaeobiogeographic affinities of Australian Cambrian faunas. In Wright, A. J., Young, G. C., Talent, J. A. & Laurie, J. R. (eds.) Memoirs of the Association of Australasian Palaeontologists, 23, 1–61. Sydney.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Broili, F. 1915. Archaeocyathinae. In Von Zittel, K. (ed.) Grundzüge der paläontologie, 4th ed. München, Berlin: Oldenbourg. 121 pp.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Brommer, A. 1998. Strukturelle entwicklung und petrogenese des nördlichen kristallingürtels der shackleton range, antarktis: proterozoische und ross-orogene krustendynamik am rand des ostantarktischen kratons. Berichte zur Polarforschung 290, 1–184.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Brommer, A., Millar, I. L. & Zeh, A. 1999. Geochronology, structural geology and petrology of the northern La Grange nunataks, Shackleton Range, Antarctica. Terra Antarctica 6, 269–78.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Kleinschmidt, G., Kreuzer, H. & Krumm, S. 1990. Stratigraphy, metamorphism and nappe-tectonics in the Shackleton Range (Antarctica). Geodätische und geophysikalische Veröffentlichungen. Reihe I 15, 64–86.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Kleinschmidt, G., Höhndorf, A. & Pohl, J. 1994a. Stratigraphy and facies of sediments and low-grade metasediments in; the Shackleton Range, Antarctica. Porlarforschung 63, 9–32.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Kleinschmidt, G., Kreuzer, H. & Krumm, S. 1994b. Metamorphic and structural evolution of the southern Shackleton Range during the Ross orogeny. Polarforschung 63, 133–56.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Höhndorf, A., Kreuzer, H., Paech, H.-J. & Weber, B. 1995a. Watts needle formation. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica. BAS GEOMAP Series, Sheet 4, 1:250.000, 29–34. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Höhndorf, A., Paech, H.-J., Kleinschmidt, G., Kreuzer, H. & Weber, B. 1995b. Stephenson bastion formation. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica. BAS GEOMAP Series, Sheet 4, 1:250.000, 35–37. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W., Bachtadse, V. & Henjes-Kunst, F. 1999. Lithostratigraphy, facies, geochronology and palaeomagnetic data from the Blaiklock Glacier Group, Shackleton Range, Antarctica. Terra Antarctica 6, 229–39.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W. & Henjes-Kunst, F. 1999. Stratigraphy, facies, and provenance analyses of the lower Cambrian Mount Wegener Formation of the Shackleton Range, Antarctica. Terra Antarctica 6, 211–28.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W. & Kleinschmidt, G. 1999. New evidence for nappe tectonics in the southern Shackleton Range, Antarctica. Terra Antarctica 6, 203–10.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W. & Kleinschmidt, G. 2007. The Pan-African nappe tectonics in the Shackleton Range. In Cooper, A. K., Barrett, P. J., Storey, B., Stump, E. & Wise, W. and the 10th ISAES editorial team (eds) Antarctica: a keystone in a changing world. Proceedings of the 10th ISAES, USGS Open-File Report 2007–104, Short Research Paper 058.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Buggisch, W. & Webers, G. F. 1992. Facies of Cambrian carbonate rocks. Ellsworth Mountains, West Antarctica. In Webers, G. F., Craddock, C. and Splettstoesser. J. F., Geology and paleontology of the Ellsworth Mountains, West Antarctica. Geological Society of America Memoire 170, 81–100.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Burgess, C. J. & Lammerink, W. 1979. Geology of the Shackleton Limestone (Cambrian) in the Byrd Glacier Area. New Zealand Antarctic Record 2, 12–16.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Castillo, P., Fanning, C. M., Fernández, R., Poblete, F. & Hervé, F. 2017. Provenance and age constraints of Paleozoic siliciclastic rocks from the Ellsworth Mountains in West Antarctica, as determined by detrital zircon geochronology. GSA Bulletin 129, 1568–84.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Choquette, P. W. & Pray, L. C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists, Bulletin 54, 207–50.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D. 1971. Shackleton Range geological survey 1970–1971. Antarctic Journal of the United States 6, 121–22.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D. 1972. Geology of the Shackleton Range. Bulletin British Antarctic Survey 31, 1–15.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D. 1982. Geology of the Shackleton Range: I. The Shackleton Range Metamorphic Complex. Bulletin British Antarctic Survey 51, 257–83.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D. 1995. Introduction. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica. BAS GEOMAP Series, Sheet 4, 1:250.000, 1–7. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D., Tessensohn, F., Thomson, M. R. A., Belyatsky, B., Braun, H.-M., Buggisch, W., Grikurov, G. E., Hofmann, J., Höhndorf, A., Kamenev, E. N., Kameneva, G. J., Kleinschmidt, G., Kreuzer, H., Leat, P. T., Olesch, M., Paech, M.-J., Pankhurst, R. J., Peters, M., Roland, N. W., Schubert, W., Solov'ev, I. A., Spaeth, G., Techmer, K. S., Thomson, J. W., Weber, B., Weber, K. & King, S. 1995. Geological map of Shackleton Range, Antarctica. BAS GEOMAP Series, Sheet 4, 1:250.000, with supplementary text, 79 pp. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Clarkson, P. D. & Wyeth, R. 1983. Geology of the Shackleton Range: III. The Blaiklock Glacier Group. Bulletin British Antarctic Survey 53, 233–44.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Claybourn, T. M., Jacquet, S. M., Skovsted, C., Topper, B., Holmer, T. P., & Brock, L. E. & A, G. 2019. Mollusks from the upper Shackleton Limestone (Cambrian Series 2) central Transantarctic Mountains, East Antarctica. Journal of Palaeontology 93, 437–59.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Claybourn, T. M., Skovsted, Ch. B., Holmer, L. E., Pan, B., Myrow, P. M., Topper, T.P. & Brock, G. A. 2020. Brachiopods from the Byrd Group (Cambrian Series 2, Stage 4) central Transantarctic Mountains, East Antarctica: biostratigraphy, phylogeny and systematics. Papers in Palaeontology 6, 349–83.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Claybourn, T. M., Skovsted, C. B., Betts, M. J., Holmer, L. E., Bassett-Butt, L. & Brock, G. A. 2021. Camenellan tommotiids from the Cambrian series 2 of East Antarctica: biostratigraphy, palaeobiogeography and systematics. Acta Palaeontologica Polonica 66, 207–29.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2013. The ICS international chronostratigraphic chart. Episodes 36, 199–204.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Cooper, R. A. & Shergold, J. H. 1991. Palaeozoic invertebrates of Antarctica. In Tingey, R. J. (ed.) Geology of Antarctica, 455–86. Oxford: Blackwell.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Cordie, D. R. & Dornbos, S. Q. 2019. Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths. Paleobiology 45, 331–46.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Curtis, M. L., Millar, I. L., Storey, B. C. & Fanning, M. 2004. Structural and geochronological constraints of early Ross orogenic deformation in the Pensacola Mountains. Antarctica. GSA Bulletin 116, 619–36.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Curtis, M. L. & Storey, B. C. 2003. Early Palaeozoic near-surface deformation in the Neptune range, Antarctica: implications for the Ross and Gondwanian orogenies. Journal of the Geological Society 160, 629–42.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Daily, B. 1973. Discovery and significance of basal Uratanna Formation, Mt Scott range, Flinders Ranges, South Australia. Search 4, 202–05.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dalziel, I. W. D. & Elliot, D. H. 1982. West Antarctica: problem child of Gondwanaland. Tectonics 1, 3–19.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense David, T. W. E. & Priestley, R. E. 1914. Glaciology, physiography, stratigraphy, and tectonic geology of south Victoria land, with short notes on paleontology by T. Griffith Taylor. British Antarctic Expedition (1907–1909) Geology 1, 1–319.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Daye, M., Higgins, J. & Bosak, T. 2019. Formation of ordered dolomite in anaerobic photosynthetic biofilms. Geology 47, 509–12.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1958. Sur quelques archaeocyatha du jebel taïssa (Anti-Atlas occidental). Service des Mines et de Carte Géologique du Maroc, Notes et Mémoires 16, 59–67.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1969. Lower Cambrian Archaeocyatha from the Ajax mine, Beltana, south Australia. Bulletin of the British Museum (Natural History), Geology Series 17, 295–376.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1970. A revision of Australian genera of Archaeocyatha. Royal Society of South Australia, Transactions 94, 21–48.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1973. Modifications de la porosité primaire de la muraille externe chez les archéocyathes réguliers. Annales de Paléontologie (Invertébrés) 59, 3–24.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1974a (1973) Les archéocyathes irréguliers d'Ajax mine (Cambrien inférieur, Australie du Sud). Bulletin du Muséum National d'Histoire Naturelle (Série 3) 195, 185–258.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1974b. Anatomie et systématique des archéocyathes réguliers sans plancher d'Ajax mine (Cambrien inférieur, Australie du Sud). Geobios 7, 91–138.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1974c. K revizii roda Paranacyathus Bedford, R. et Bedford, W.R., 1937 [On the revision of the genus Paranacyathus Bedford, R. et Bedford, W.R., 1937]. In Zhuravleva, I. T. & Rozanov, A. Yu (eds) Biostratigrafiya i paleontologiya nizhnego kembriya evropy i severnoy azii [Lower Cambrian biostratigraphy and paleontology of Europe and Northern Asia], 167–78. Moscow: Nauka. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1975. Archaeocyatha provenant de blocs erratiques des tillites de dwyka (Afrique du Sud). Annals of the South African Museum 67, 331–61.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 1992. The archaeocyathan fauna from the whiteout conglomerate, Ellsworth Mountains, west Antarctica. Geological Society of America, Memoir 170, 279–84.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. 2007. Lower Cambrian archaeocyathan bioconstructions. Comptes Rendus Palevol 6, 5–19.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Lafuste, J. & Gangloff, R. 1981. Microstructure of Tabulaconus and its significance to the taxonomy of early Phanerozoic organisms. In Taylor, M. E. (ed.) Short papers for the Second International Symposium on the Cambrian System. Open-File Report 81–743, 64.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Rozanov, A. Y. & Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine 121, 291–99.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Gangloff, R. & Lafuste, J. 1987. Tabulaconus handfield: microstructure and its implications in the taxonomy of primitive corals. Journal of Paleontology 61, 1–9.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Zhuravlev, A. Y. & Rozanov, A. Y. 1988. Novye rody pravil'nykh dnishchevykh i odnokamernykh arkheotsiat iz nizhnego kembriya sibiri [New genera of regular tabulate and single-chambered archaeocyaths from the lower Cambrian of Siberia]. Paleontologicheskiy Zhurnal 4, 97–99. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Zhuravlev, A. Y. & Rozanov, A. Y. 1989. Praviln'ye arkheotsiaty [Regular archaeocyaths], 198 pp. Moscow: Paleontologicheskiy Institut, Akademiya Nauk SSSR, Trudy 233. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Zhuravlev, A. Y. & Kruse, P. D. 2002. Class archaeocyatha bornemann, 1884. In Hooper, J. N. A. & van Soest, R. W. M. (eds) Systema Porifera. A Guide to the classification of Sponges 2, 1539–1699. New York: Kluver Academic/Plenum Publishers.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Zhuravlev, A. Y. & Kruse, P. D. 2012. Part E, revised, volume, chapter 19. Systematic descriptions: Archaeocyatha. Treatise Online 50, 1–186. Lawrence, Kansas: The University of Kansas. Paleontological Institute.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F., Zhuravlev, A. Y. & Kruse, P. D. 2015. Systematic descriptions: Archaeocyatha. In Selden, P. A. (ed.) Treatise on invertebrate paleontology. Part E (revised) Porifera 5, 923–1084. Lawrence, Kansas: The University of Kansas. Paleontological Institute.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Debrenne, M. 1960. Révision de la collection T. H. Ting d'Archaeocyatha conservée au Musee de Marburg (Allemagne). Société Géologique de France, Bulletin 2, 695–706.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Gravestock, D. I. 1991. Archaeocyaths from the Sellick Hill Formation and Fork Tree Limestone on Fleurieu Peninsula, South Australia. Geological Society of Australia Special Publication 16, 292–309.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Kruse, P. D. 1986. Shackleton limestone archaeocyaths. Alcheringa 10, 235–78.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Kruse, P. D. 1989. Cambrian Antarctic archaeocyaths. The Geological Society of London. Special Publication 47, 15–28.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Zhuravlev, A. Y. 1990. New irregular archaeocyath taxa. Geobios 23, 299–305.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Zhuravlev, A. Y. 1992. Irregular archaeocyaths. Éditions du Centre National de la Recherche Scientifique, Cahiers de Paléontologie, Paris, 212 pp.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Debrenne, F. & Zhuravlev, A. Y. 1997. Cambrian food web: a brief review. Geobios 30, 181–88.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dickson, J. A. D. 1965. A modified staining technique for carbonates in thin section. Nature 205, 587.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dickson, J. A. D. 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology 36, 491–505.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dilliard, K. A., Pope, M. C., Coniglio, M., Hasiotis, S. T. & Lieberman, B. S. 2007. Stable isotope geochemistry of the lower Cambrian Sekwi formation, Northwest Territories, Canada: implications for ocean chemistry and secular curve generation. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 174–94.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense DiLoreto, Z. A., Bontognali, T. R. R., Al Disi, Z. A., Al-Kuwari, H. A. S., Williford, K. H., Strohmenger, C. J., Sadooni, F., Palermo, C., Rivers, J. M., McKenzie, J. A., Tuite, M. & Dittrich, M. 2019. Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid Sabkhas, Qatar. Extremophiles 23, 201–18.Google ScholarPubMedUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Duguid, S. M. A., Kurtis Kyser, T., James, N. P. & Rankey, E. C. 2010. Microbes and ooids. Journal of Sedimentary Research 80, 236–51.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dunham, R. J.. 1962. Classification of carbonate rocks according to their depositional texture. American Association of Petroleum Geologists Memoir 1, 108–21.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Dunham, R. J. 1971. Meniscus cement. In Bricker, O. P. (ed.) Carbonate cements studies in geology 19, 297–300. Baltimore: Johns Hopkins, University Press.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Ehrenberg, C. G. 1834. Dritter beitrag zur erkenntniss grosser organisation in der richtung des kleinsten raumes. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1833, 145–336.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Embry, A. F. & Klovan, J. E. 1971. A late Devonian reef tract on northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology 19, 730–81.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Etheridge, R. Jr. 1890. On some Australian species of the family Archaeocyathinae. Royal Society of South Australia, Transactions 13, 10–22.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Evans, K. R., Rowell, A. J. & Rees, M. N. 1995. Sea-level changes and stratigraphy of the Nelson Limestone (Middle Cambrian), Neptune Range, Antarctica. Journal of Sedimentary Research B65, 32–43.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Evans, K. R., Mckenna, L.W. III, Lieberman, B. S., Weichert, W. D. & Macleod, K. G. 2018. Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica. Antarctic Science 30, 29–43.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H. & Onasch, C. M. 2004. Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 26, 1521–29.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Fitzsimons, I. C. W. 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology 28, 879–82.2.0.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Flügel, E. 2004. Microfacies of carbonate rocks. Analysis, interpretation and application. 976 pp. Berlin: Springer-Verlag.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Folk, R. L.. 1962. Spectral subdivision of limestone types. American Association of Petroleum Geologists Memoir 1, 62–84.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Fritz, W. H. 1972. Lower Cambrian trilobites from the Sekwi Formation type section, Mackenzie Mountains, northwestern Canada. Geological Survey of Canada Bulletin 212, 1–90.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Gandin, A. & Debrenne, F. 2010. Distribution of the archaeocyath-calcimicrobial bioconstructions on the early Cambrian shelves. Paleoworld 19, 222–41.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Geyer, G. 2019. A comprehensive Cambrian correlation chart. Episodes 42, 321–31.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Golovanov, N. P., Milstein, V. E., Mikhailov, V. M. & Shulyatin, O. G. 1979. Stromatolity i mikrofitolity khrebta shekltona (zapadnaya Antarktida) [Stromatolites and microphytolites of the Shackleton Range (West Antarctica)]. Doklady Akademii Nauk SSSR 249, 977–79. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Golovanov, N. P., Mikhailov, V. M. & Shulyatin, O. G. 1980. Pervie diagnostiruemie stromatoliti antarktidi i ich biostratigraficheskoe znachenie [First diagnostic stromatolites from Antarctica and their biostratigraphical significance]. Antarktika 19, 152–59. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., von Frese, R. R. B., Young, D. A., Blankenship, D., Holt, J. W., Ivanov, S. V., Kiselev, A. V., Masolov, V. N., Eagles, G., Gohl, K., Jokat, W., Damaske, D., Finn, C., Aitken, A., Bell, R. E., Armadillo, E., Jordan, T. A., Greenbaum, J. S., Bozzo, E., Caneva, G., Forsberg, R., Ghidella, M., Galindo-Zaldivar, J., Bohoyo, F., Martos, Y. M., Nogi, Y., Quartini, E., Kim, H. R. & Roberts, J. L. 2018. New magnetic anomaly map of the Antarctic. Geophysical Research Letters 45, 6437–49.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense González, P. D., Tortello, M. F. & Damborenea, S. E. 2011. Early Cambrian archaeocyathan limestone blocks in low grade metaconglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina). Geologica Acta 9, 159–73.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense González, P. D., Tortello, M. F., Damborenea, S. E., Naipauer, M., Sato, A. M. & Varela, R. 2013. Archaeocyaths from South America: review and a new record. In: Lower Palaeozoic fossils, biostratigraphy and events from western Gondwana. Geological Journal, Special Issue 48, 114–25.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Goodge, J. W. 2020. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Research 80, 50–122.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Goodge, J. W., Myrow, P., Williams, I. S. & Bowring, S. 2002. Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup. Journal of Geology 110, 393–406.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Goodge, J. W., Myrow, P., Phillips, D., Fanning, C. M. & Williams, I. S. 2004b. Siliciclastic record of rapid denudation in response to convergent-margin orogenesis, Ross orogen, Antarctica. Geological Society of America, Special Paper 378, 105–26.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Goodge, J. W., Williams, I. S. & Myrow, P. 2004a. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross Orogen, Antarctica: detrital record of rift-, passive-, and active-margin sedimentation. GSA Bulletin 116, 1253–79.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Gordey, S. P. & Anderson, R. G. 1993. Evolution of the northern Cordillera and miogeocline, Nahanni map area (105–I), Yukon and northwest territories. Geological Survey of Canada Memoir 428, 1–214.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Gordon, W. T. 1920. Scottish National Antarctic expedition 1902–1904: Cambrian organic remains from a dredging in the Weddell Sea. Royal Society of Edinburgh, Transactions 52, 681–714.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Grant, R. E. 1836. Animal kingdom. In Todd, R. B. (ed.) The cyclopaedia of anatomy and physiology 1, 107–18. London: Sherwood, Gilbert and Piper.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Gravestock, D. I. 1984. Archaeocyatha from lower parts of the lower Cambrian carbonate sequence in South Australia. Memoirs of the Association of Australasian Palaeontologists 2, 1–139.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Gravestock, D. I., Alexander, E. M., Demidenko, Y., Esakova, E., Holmer, N. V., Jago, L. E., Lin, J. B., Melnikova, T., Parkhaev, L. M., Rozanov, P., Yu, A., Ushatinskaya, G. T., Zang, W.-L., Zhegallo, E. A. & Zhuravlev, A. Y. 2001. The Cambrian biostratigraphy of the Stansbury Basin, South Australia. Transactions of the Palaeontological Institute 282, 1–344.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Grunow, A., Hanson, R. & Wilson, T. 1996. Were aspects of Pan-African deformation linked to Iapetus opening? Geology 24, 1063–66.2.3.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Handfield, R. C. 1969. Early Cambrian coral-like fossils from the northern Cordillera of western Canada. Canadian Journal of Earth Sciences 6, 782–85.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Handfield, R. C. 1971. Archaeocyatha from the Mackenzie and Cassiar mountains, Northwest Territories, Yukon Territory and British Columbia. Geological Survey of Canada, Bulletin 201, 1–119.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, D. J., Rushton, A. W. A., Leng, M. J. & Gabbott, S. E. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society 168, 705–16.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense He, T., Zhu, M., Mills, B. J. W., Wyn, P. M., Zhuravlev, A. Y., Tostevin, R., Pogge von Strandmann, P. A. E., Yang, A., Poulton, S. W. & Shields, G. A. 2019. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience 12, 468–74.CrossRefGoogle ScholarPubMedUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Henderson, R. A., Debrenne, F., Rowell, A. J. & Webers, G. F. 1992. Brachiopods, archaeocyathids and pelmatozoa from the Minaret Formation of the Ellsworth Mountains, West Antarctica. In Webers, G. F., Craddock, C. & Splettstoesser, J. F. (eds) Geology and paleontology of the Ellsworth Mountains, West Antarctica. Geological Society of America, Memoir 170, 249–63. Boulder, Colorado: The Geological Society of America.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Herbosch, A. & Verniers, J. 2011. What is the biostratigraphic value of the ichnofossil Oldhamia for the Cambrian: a review. Geologica Belgica 14, 229–48.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hesse, R. 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews 26, 253–84.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hill, D. 1964a. Archaeocyatha from loose material at Plunket Point at the head of Beardmore glacier. In Adie, R. J. (ed.) Antarctic geology, 609–22. Amsterdam: North Holland Publishing.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hill, D. 1964b. Archaeocyatha from the Shackleton Limestone of the Ross System, Nimrod Glacier Area, Antarctica. Transactions of the Royal Society of New Zealand, Geology 2, 137–46.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hill, D. 1965. Archaeocyatha from Antarctica and a review of the phylum. Trans-Antarctic Expedition 1955–1958, Scientific Reports 10, 1–151.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hinde, G. J. 1889. On Archaeocyathus, billings, and on other genera, allied to or associated with it, from the Cambrian strata of North America, Spain, Sardinia, and Scotland. Quarterly Journal of the Geological Society, London 45, 125–48.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Höfle, H.-C. & Buggisch, W. 1995. Glacial geology and petrography of erratics in the Shackleton Range. Antarctica. Polarforschung 63, 183–201.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hofmann, J., Kaiser, G., Klemm, W. & Paech, H.-J. 1980. K/Ar- Alter von doleriten und metamorphiten der shackleton range und der whichaway-nunataks, Ost- un südostumrandung des filchner-eisschelfs (Antarktis). Zeitschrift für geologische Wissenschaften 8, 1227–32.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Holmer, L., Popov, L., Koneva, S. & Bassett, M. 2001. Cambrian–Early Ordovician brachiopods from Malyi Karatau, the western Balkhash region and Tien Shan, Central Asia. Special Papers in Palaeontology 65, 1–180.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hood, A. V. S. & Wallace, M. W. 2018. Neoproterozoic marine carbonates and their paleoceanographic significance. Global and Planetary Change 160, 28–45.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hotten, R. 1993. Die mafischen gange der Shackleton Range/Antarktika: petrographie, geochemie, isotopengeochemie und paläomagnetik. Berichte zur Polarforschung 118, 1–225.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Hu, Y., Cai, C., Liu, D., Pederson, C. L., Jiang, L., Shen, A. & Immenhauser, A. 2020. Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology 67, 1161–87.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Illing, L. V. 1954. Bahaman calcareous sands. AAPG Bulletin 38, 1–95.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jackson, I. S. C. & Claybourn, T. M. 2018. Morphometric analysis of inter- and intraspecific variation in the Cambrian series 2, stages 3–4 helcionelloid mollusc Mackinnonia. Palaeontology 61, 761–73.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jacobs, J., Fanning, C. M., Henjes-Kunst, F., Olesch, M. & Paech, H.-J. 1998. Continuation of the Mozambique belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. Journal of Geology 106, 385–406.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jacobs, J., Fanning, C. M. & Bauer, W. 2003. Timing of Grenville-age vs. Pan-African medium- to high-grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Research 125, 1–20.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jacobs, J., Opås, B., Elburg, M. A., Läufer, A., Estrada, S., Ksienzyk, A. K., Damaske, D. & Hofmann, M. 2017. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica. Precambrian Research 294, 1–14.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jago, J. B., Zang, W. L., Sun, X., Brock, G. A., Paterson, J. R. & Skovsted, C. B. 2006. A review of the Cambrian biostratigraphy of South Australia. Palaeoworld 15, 406–23.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jago, J. B., Gehling, J. G., Paterson, J. R., Brock, G. A. & Zang, W. 2012. Cambrian stratigraphy and biostratigraphy of the Flinders Ranges and the north coast of Kangaroo Island, South Australia. Episodes 35, 247–55.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jago, J. B., Gehling, J. G., Betts, M. J., Brock, G. A., Dalgarno, C. R., García-Bellido, D. C., Haslett, P. G., Jacquet, S. M., Kruse, P. D., Langsford, N. R., Mount, T. J. & Paterson, J. R. 2020. The Cambrian system in the Arrowie Basin, Flinders Ranges, South Australia. Australian Journal of Earth Sciences 67, 923–48.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jordan, T. A., Ferraccioli, F. & Leat, P. T. 2017. New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea rift system of West Antarctica. Gondwana Research 42, 29–48.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Jordan, T. A., Riley, T. R. & Siddoway, C. S. 2020. The geological history and evolution of West Antarctica. Nature Reviews Earth & Environment 1, 117–33.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kerr, A. & Hermichen, W. D. 1999. Glacial modification of the Shackleton Range, Antarctica. Terra Antarctica 6, 353–60.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kleinschmidt, G. 2007. Shackleton Range. In Riffenburgh, B. (ed.) Encyclopedia of the Antarctic 1, 890–91. New York and London: Taylor and Francis Group.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kleinschmidt, G., Henjes-Kunst, F. & Tessensohn, F. 2001. Nappe tectonics in the central Shackleton Range, Antarctica. Zeitschrift der Deutschen Geologischen Gesellschaft 152, 227–48.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kleinschmidt, G., Buggisch, W., Läufer, A. L., Helferich, S. & Tessensohn, F. 2002. The ‘Ross’ orogenic structures in the Shackleton Range and their meaning for Antarctica. In Gamble, J. A., Skinner, D. N. B. & Henrys, S. (eds) Antarctica at the close of a millennium. Proceedings of 8th International Symposium on Antarctic Earth Sciences (ISAES) 35, 75–83. Wellington: The Royal Society of New Zealand.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kleinschmidt, G. & Boger, S. D. 2009. The Bertrab, Littlewood and Moltke nunataks of Prinz-Regent-Luitpold-Land (Coats Land) enigma of East Antarctic geology. Polarforschung 78, 95–104.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kleinschmidt, G. & Buggisch, W. 1994. Plate tectonic implications of the structure of the Shackleton Range Antarctica. Polarforschung 63, 57–62.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Konyushkov, K. N. & Shulyatin, O. G. 1980. Ob arkheotsiatakh antarktidy i ikh sopostavlenii s arkheotsiatami sibiri [On the archaeocyaths of Antarctica and their comparison with the archaeocyaths of siberia]. In Zhuravleva, I. T. (ed.) Kembriy Altae–Sayanskoy skladchatoy, oblasti [Cambrian of the Altay-Sayan fold belt], 143–50. Moscow: Nauka. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Krohne, N., Lisker, F., Kleinschmidt, G., Klügel, A., Läufers, A., Estrada, S. & Spiegel, C. 2016. The Shackleton Range (East Antarctica): an alien block at the rim of Gondwana? Geological Magazine 155, 841–64.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. 1978. New Archaeocyatha from the early Cambrian of the Mt Wright area, New South Wales. Alcheringa 2, 27–47.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. 1982. Archaeocyathan biostratigraphy of the Gnalta Group at Mt. Wright, New South Wales. Palaeontographica A 177, 129–212.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. & West, P. W. 1980. Archaeocyatha of the Amadeus and Georgina Basins. BMR Journal of Australian Geology and Geophysics 5, 165–181.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D., Zhuravlev, A. Y., Parkhaev, P. Y. & Zhu, M. 2017. Comment: a new lower Cambrian shelly fossil biostratigraphy for South Australia by Marissa J. Betts, John R. Paterson, James B. Jago, Sarah M. Jacquet, Christian B. Skovsted, Timothy P. Topper & Glenn A. Brock. Gondwana Research 44, 258–61.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. & Debrenne, F. 2020. Ajax mine archaeocyaths: a provisional biozonation for the Upper Hawker Group (Cambrian stages 3–4), Flinders Ranges, South Australia. Australasian Palaeontological Memoirs 53, 1–238.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. & Jago, J. B. (eds) 2016. Palaeo down under 2. Geological field excursion guide: Cryogenian-Ediacaran–Cambrian of the Adelaide Fold Belt. Report Book 2016/00011. Department of State Development, South Australia, Adelaide.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Kruse, P. D. & Moreno-Eiris, E. 2013. Archaeocyaths of the White Point Conglomerate, Kangaroo Island, South Australia. Alcheringa 38, 1–64.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Lafuste, J., Debrenne, F., Gandin, A. & Gravestock, D. 1991. The oldest tabulate coral and the associated Archaeocyatha, lower Cambrian, Flinders Ranges, South Australia. Geobios 24, 697–718.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Laird, M. G. 1963. Geomorphology and stratigraphy of the Nimrod Glacier–Beaumont Bay region, southern Victoria land, Antarctica. New Zealand Journal of Geology and Geophysics 6, 465–84.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Laird, M. G., Mansergh, G. D. & Chappell, J. M. A. 1971. Geology of the central Nimrod Glacier Area, Antarctica. New Zealand Journal of Geology and Geophysics 14, 427–68.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Latif, K., Xiao, E., Riaz, M. & Hussein, A. A. A. 2019. Calcified cyanobacteria fossils from the Leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform). Carbonates and Evaporites 34, 825–43.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Lee, J.-H., Lee, H. S., Chen, J., Woo, J. & Chough, S. K. 2014. Calcified microbial reefs in Cambrian series 2, north China platform: implications for the evolution of Cambrian calcified microbes. Palaeogeography, Palaeoclimatology, Palaeoecology 403, 30–42.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Lehrmann, D. J., Minzoni, M., Li, X., Yu, M., Payne, J. L., Schaal, B. M. K. & Enos, P. 2012. Lower Triassic oolites of the Nanpanjiang Basin, South China: facies architecture, giant ooids, and diagenesis – implications for hydrocarbon reservoirs. AAPG Bulletin 96, 1389–414.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Lieberman, B. S. 2004. Revised biostratigraphy, systematics and paleobiogeography of the trilobites from the middle Cambrian Nelson Limestone, Antarctica. The University of Kansas, Paleontological Contributions 14, 1–23.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Lisker, F., Schäfer, T. & Olesch, M. 1999. The uplift/denudation history of the Shackleton Range (Antarctica) based on fission-track analyses. Terra Antarctica 6, 345–52.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Liu, L. J., Wu, Y. S., Jiang, H. X., Wu, N. Q. & Jia, L. Q. 2017. Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin, northwest China. Palaios 32, 462–89.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Liu, L., Liang, L., Wu, Y., Zhou, X., Jia, L. & Riding, R. 2020. Ordovician cyanobacterial calcification: a marine fossil proxy for atmospheric CO2. Earth and Planetary Science Letters 530, 115950.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Liu, W. & Zhang, X. 2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies 58, 779–87.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Loewy, S. L., Dalziel, I. W. D., Pisarevsky, S., Connelly, J. N., Tait, J., Hanson, R. E. & Bullen, D. 2011. Coats land crustal block, east Antarctica: a tectonic tracer for Laurentia?. Geology 39, 859–62.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Longman, M. W. 1980. Carbonate diagenetic textures from near-surface diagenetic environments. AAPG Bulletin 64, 461–87.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Luchinina, V. A. 2013. Cambrian algoflora: association of various microorganism groups. Paleontological Journal 47, 989–96.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Machel, H. G. 2004. Concepts and models of dolomitization: a critical reappraisal. Geological Society London Special Publications 235, 7–63.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense MacNaughton, R. B., Moynihan, D. P., Roots, C. F. & Crowley, J. L. 2016. New occurrences of Oldhamia in eastern Yukon, Canada: stratigraphic context and implications for Cambrian deep-marine biostratigraphy. Ichnos 23, 33–52.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Mángano, M. G. & Buatois, L. A. 2016. The Cambrian explosion. In Mángano, M. & Buatois, L. (eds) The trace-fossil record of major evolutionary events. Topics in Geobiology 39, 73–126. Dordrecht: Springer-Verlag.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Mansy, J. L., Debrenne, F. & Zhuravlev, A. Y. 1993. Calcaires à archéocyathes du cambrien inférieur du nord de la colombie britannique (Canada). Implications paléogéographiques et précisions sur l'extension du continent américano-koryakien. Geobios 26, 643–83.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Margolix, S. & Rex, R. 1971. Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy. GSA Bulletin 82, 843–52.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Marsh, P. D. 1983. The late Precambrian and early Palaeozoic history of the Shackleton Range, Coats Land. In Oliver, R. L., James, P. R. & Jago, J. B. (eds) Antarctic earth science, 190–93. Canberra and Cambridge: Australian Academy of Science & Cambridge University Press.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Marsh, P. D. 1985. Ice surface and bedrock topography in coats land and part of Dronning Maud Land, Antarctica, from satellite imagery. British Antarctic Survey Bulletin 68, 19–36.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Matsch, C. L. & Ojakangas, R. W. 1992. Stratigraphy and sedimentology of the Whiteout Conglomerate, an upper Paleozoic glacigenic unit, Ellsworth Mountains, West Antarctica. In Webers, G. F., Craddock, C. & Splettstoesser, J. F. (eds) Geology and paleontology of the Ellsworth Mountains, West Antarctica. Geological Society of America Memoir 170, 37–62. Boulder, Colorado: The Geological Society of America.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Mazzullo, S. J. 2000. Organogenic dolomitization in peritidal to deep sea sediments. Journal of Sedimentary Research 70, 10–23.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense McMenamin, M. A. S., Debrenne, F. & Zhuravlev, A. Y. 2000. Early Cambrian Appalachian archaeocyaths: further age constraints from the fauna of New Jersey and Virginia, U.S.A. Geobios 33, 693–708.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Medwedeff, D. A. & Wilkinson, B. H. 1983. Cortical fabric in calcite and aragonite ooids. In Peryt, T. (ed.) Coated grains, 109–15. Berlin: Springer-Verlag.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Merdith, A. S., Collins, A. S., Williams, S. E., Pisarevsky, S., Foden, J. D., Archibald, D. B., Blades, M. L., Alessio, B. L., Armistead, S., Plavsa, D., Clark, C. & Müller, R. D. 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research 50, 84–134.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Millar, I. L. & Storey, B. C. 1995. Early Palaeozoic rather than Neoproterozoic volcanism and rifting within the Transantarctic Mountains. Journal of the Geological Society 152, 417–20.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Morycowa, E., Rubinowski, Z. & Tokarski, A. K. 1982. Archaeocyathids from a moraine at Three Sisters Point, King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 74, 73–80.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Moyes, A. B., Groenewald, P. B. & Brown, R. W. 1993. Isotopic constraints on the age and origin of the Brattskarvet Intrusive Suite, Dronning Maud Land, Antarctica. Chemical Geology 106, 453–66.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Myrow, P. M., Pope, M. C., Goodge, J. W., Fischer, W. & Palmer, A. R. 2002a. Depositional history of pre-Devonian strata and timing of ross Orogenic tectonism in the central Transantarctic Mountains, Antarctica. Geological Society of America Bulletin 114, 1070–88.2.0.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Myrow, P. M., Fischer, W. & Goodge, J. W. 2002b. Wave-modified turbidites: combined-flow shoreline and shelf deposits, Cambrian, Antarctica. Journal of Sedimentary Research 72, 641–56.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Noble, J. P. A. & Van Stempvoort, D. R. 1989. Early burial quartz authigenesis in Silurian platform carbonates, New Brunswick, Canada. Journal of Sedimentary Research 59, 65–76.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Ogg, J. G., Ogg, G. M. & Gradstein, F. M. 2016. Cambrian. In Ogg, J. G., Ogg, G. M. & Gradstein, F. M. (eds) A concise geologic time scale, 41–55. Amsterdam: Elsevier.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Okulitch, V. J. 1935. Cyathospongia – a new class of Porifera to include the Archaeocyathinae. Royal Society of Canada, Transactions (Series 3, Section 4) 29, 75–106.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Okulitch, V. J. 1937. Some changes in nomenclature of Archaeocyathi (Cyathospongia). Journal of Paleontology 11, 251–52.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Olesch, M., Braun, H.-M., Kamenev, E. N., Kameneva, G. I. & Schubert, W. 1995. Read Group. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica, 8–13. BAS GEOMAP Series, Sheet 4, 1:250.000. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Paech, H. –J. 1982. Als geologe in den Read Mountains. In Lange, G. (ed.) Bewährung in Antarktika, antarktisforschung der DDR, 159–64. Leipzig: Brockhaus.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Palmer, A. R. & Gatehouse, C. G. 1972. Early and middle Cambrian trilobites from Antarctica. Contributions to the geology of Antarctica. Geological Survey Professional Paper 456–D, 1–36.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Palmer, A. R. & Rowell, A. J. 1995. Early Cambrian trilobites from the Shackleton Limestone of the central Transantarctic Mountains. Journal of Paleontology 69, 1–28.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Pankhurst, R. J., Marsh, P. D. & Clarkson, P. D. 1983. A geochronological investigation of the Shackleton Range. In Oliver, R. L., James, P. R. & Jago, J. B. (eds) Antarctic earth sciences, 176–82. Canberra and Cambridge: Australian Academy of Science & Cambridge University Press.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Pankhurst, R. J., Kreuzer, H., Höhndorf, A. & Belyatsky, B. 1985. Geochronology. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica, 53–56. BAS GEOMAP Series, Sheet 4, 1:250.000. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Paterson, J. R., Skovsted, C. B., Brock, G. A. & Jago, J. B. 2007. An early Cambrian faunule from the Koolywurtie Limestone Member (Parara Limestone), Yorke Peninsula, South Australia and its biostratigraphic significance. Association of Australasian Palaeontologists, Memoir 34, 131–46.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Paxman, G. J. G., Jamieson, S. S. R., Ferraccioli, F., Bentley, M. J., Forsberg, R., Ross, N., Watts, A. B., Corr, H. F. J. & Jordan, T. A. 2017. Uplift and tilting of the Shackleton Range in east Antarctica driven by glacial erosion and normal faulting. Journal of Geophysical Research Solid Earth 122, 2390–408.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian period. In Gradstein, F. M., Ogg, G. J., Schmitz, M. & Ogg, G. M. (eds) The geologic time scale, 437–88. Amsterdam: Elsevier.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Peng, S. & Robison, R. A. 2000. Agnostoid biostratigraphy across the middle-upper Cambrian boundary in Hunan, China. Paleontological Society Memoir 53, 1–104.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Perejón, A., Moreno-Eiris, E. & Menéndez, S. 2008. Los arqueociatos del cámbrico Inferior de navalcastaño (Sierra Morena, Córdoba, España): sistemática y bioestratigrafía. Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica 102, 93–119.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Perejón, A., Rodríguez-Martínez, M., Moreno-Eiris, E., Menéndez, S. & Reitner, J. 2019. First microbial-archaeocyathan boundstone record from early Cambrian erratic cobbles in glacial diamictite deposits of Namibia (Dwyka Group, Carboniferous). Journal of Systematic Palaeontology 17, 881–910.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Petrash, D. A., Bialik, O. M., Bontognali, T. R., Vasconcelos, C., Roberts, J. A., McKenzie, J. A. & Konhauser, K. O. 2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews 171, 558–82.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Pickering, K., Stow, D., Watson, M. & Hiscott, R. 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews 23, 75–175.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Pirie, J. H. H. 1913. Scottish National Antarctic expedition, 1902–04: deep-sea deposits. Transactions of the Royal Society of Edinburgh, 49, 645–86.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Popov, L. E., Holmer, L. E., Hughes, N. C., Ghobadi Pour, M. & Myrow, P. M. 2015. Himalayan Cambrian brachiopods. Papers in Palaeontology 1, 345–99.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Popov, L. E. & Solov'ev, I. A. 1981. Srednekembriyskie bezzamkovye brakhiopody, khantsellori, konikonkhii i trilobity zapadnoy antarktidy (khebty Sheklton i Ardzhentina) [Middle Cambrian inarticulate brachiopods, chancelloriids, hyolithids, and trilobites from West Antarctica (Shackleton and Argentina ranges)]. Antarktika 20, 64–72. [In Russian.]Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Pratt, B. 1984. Epiphyton and Renalcis – diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Petrology 54, 948–71.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Purdy, E. G. 1963a. Recent calcium carbonate facies of the Great Bahama Bank. 1. Petrography and reaction groups. The Journal of Geology 71, 334–55.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Purdy, E. G. 1963b. Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. The Journal of Geology 71, 472–97.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rees, M. N., Girty, G. H., Panttja, S. K. & Braddock, P. 1987. Multiple phases of early Paleozoic deformation in the central Transantarctic Mountains. Antarctic Journal, Review 22, 33–35.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rees, M. N., Pratt, B. R. & Rowell, A. J. 1989. Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains. Sedimentology 36, 341–61.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rees, M. N. & Rowell, A. J. 1991. The pre-Devonian Paleozoic clastics of the central Transantarctic Mountains: stratigraphy and depositional settings. In Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological evolution of Antarctica, 187–92. Cambridge: Cambridge University Press.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Reid, R. P. & MacIntyre, I. G. 2000. Microboring versus recrystallization: further insight into the micritization process. Journal of Sedimentary Research 70, 24–28.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rex, D. C. 1972. K-Ar determinations on volcanics and associated rocks from the Antarctic Peninsula and Dronning Maud Land. In Adie, R. J. (ed.) Antarctic geology and geophysics, 133–36. Oslo: Universitetsforlaget.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Riding, R. 1991. Cambrian Calcareous cyanobacteria and algae. In Riding, R. (ed.) Calcareous algae and stromatolites, 305–34. Berlin: Springer-Verlag.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Riding, R. 2001. Calcified algae and bacteria. In Zhuravlev, A. Yu. & Riding, R. (eds) Ecology of the Cambrian radiation, 445–73. New York: Columbia University Press.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rode, A., Lieberman, B. & Rowell, A. 2003. A new early Cambrian bradoriid (Arthropoda) from east Antarctica. Journal of Paleontology 77, 691–97.2.0.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Roland, N. W., Braun, H. M., Hofman, J., Kamenev, E. N., Kamenenva, G. I., Kleischmidt, G., Olesch, M. & Paech, H.-J. 1995. Pioneers group. In Thomson, J. W. & Thomson, M. R. A. (eds) Geological map of Shackleton Range, Antarctica, 20–18. BAS GEOMAP Series, Sheet 4, 1:250.000. Cambridge: British Antarctic Survey.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Romer, T., Mezger, K. & Schmädicke, E. 2009. Pan-African eclogite facies metamorphism of ultramafic rocks in the Shackleton Range, Antarctica. Journal of Metamorphic Geology 27, 335–47.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J., Rees, M. N., Cooper, R. A. & Pratt, B. R. 1986. Early Paleozoic history of the central Transantarctic Mountains: evidence from the Holyoake Range, Antarctica. Geological Society of America, Abstracts with Programs 18, 735.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J., Rees, M. N., Cooper, R. A. & Pratt, B. R. 1988. Early Paleozoic history of the central Transantarctic Mountains: evidence from the Holyoake Range, Antarctica, New Zealand. Journal of Geology and Geophysics 31, 397–404.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J., Rees, M. N. & Evans, K. R. 1992a. Evidence of major middle Cambrian deformation in the ross orogen, Antarctica. Geology 20, 31–34.2.3.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J., Rees, M. N. & Evans, K. R. 1992b. Depositional setting of the lower and middle Cambrian in the Pensacola Mountains. Antarctic Journal 25, 40–42.Google ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J., Van Schmus, W. R., Storey, B. C., Fetter, A. H. & Evans, K. R. 2001. Latest Neoproterozoic to Mid-Cambrian age for the main deformation phases of the Transantarctic Mountains: new stratigraphic and isotopic constraints from the Pensacola Mountains, Antarctica. Journal of the Geological Society 158, 295–308.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowell, A. J. & Rees, M. N. 1989. Early Palaeozoic history of the Beardmore Glacier area: implications for a major Antarctic structural boundary within the Transantarctic Mountains. Antarctic Science 1, 249–60.CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rowland, S. M. 2001. Archaeocyaths – a history of phylogenetic interpretation. Journal of Paleontology 75, 1065–78.2.0.CO;2>CrossRefGoogle ScholarUniversidad Complutense de Madrid Buscar en la Biblioteca Complutense Rozanov, A. Y. 1986. Problematica of the early Cambrian. In Hoffman, A. & Nitecki, M. H. (eds) Problematic fossil taxa. Oxford Monographs on Geology and Geophysics 5, 87–96. New York: Oxford University Press.Google ScholarUniversidad Complutense d
Collections