Publication:
Evaluación in vitro de un sistema de adhesión basado en grabado ácido en caliente para mejorar la fuerza de adhesión al óxido de circonio

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
INTRODUCCIÓN Y OBJETIVOS En la búsqueda del material restaurador ideal en la Odontología Protética actual el óxido de circonio ha despertado un especial interés entre los investigadores del campo. Sin embargo, a pesar de sus propiedades mecánicas excelentes y comportamiento estético aceptable, existe una preocupación sustancial con respecto a su capacidad de adhesión por la ausencia de fase vítrea en su estructura. En un intento de construir un protocolo de adhesión fiable y universal, se han desarrollado numerosas técnicas que, de manera mecánica, química o combinada, buscan preparar la superficie de la circona para un mayor contacto con el agente cementante. Entre los métodos de tratamientos de superficie existentes hasta el momento, se encuentra la aplicación de soluciones químicas de ácido fluorhídrico (AF). Si bien esta técnica ha sido mencionada otras veces en la literatura, su utilización en baja concentración y con aporte de calor no se ha llegado a estudiar exhaustivamente. Por ello, el objetivo del presente estudio fue evaluar la fuerza de adhesión entre la circona y el cemento de resina resultante de la aplicación la técnica de grabado ácido en baja concentración y en caliente, en la superficie de la circona. MATERIAL Y MÉTODOS Un total de 32 discos (Ø 10 x h 3 mm) de óxido de circonio fueron aleatoriamente divididos entre un grupo que fue sometido a la técnica de chorreado con partículas de aluminio (grupo C) y otro grupo que fue sometido a la técnica de grabado ácido con AF a 100ºC durante 10 minutos (grupo HE). Tras los tratamientos de superficie correspondientes, se aplicó una capa de primer, y los discos de cada grupo fueron emparejados entre sí mediante un cemento de resina. Las probetas fueron almacenadas en agua durante 24 horas, y seguidamente fueron envejecidas artificialmente mediante un proceso de termociclado de 5000 ciclos. Finalmente, se llevaron a cabo ensayos de resistencia al cizallamiento. Los valores máximos de resistencias a las fuerzas de cizalla 13 (MPa) fueron registrados y estadísticamente analizados a través del test t de Student. El nivel de significación se estableció para p ≤0,05. RESULTADOS Se encontraron diferencias estadísticamente significativas (p ≤0,05) entre los resultados de los dos grupos de estudio. Los valores de resistencia al cizallamiento más altos correspondieron al grupo C (10,98±5,48), muy por debajo de los obtenidos en el grupo HE (5,20±0,86). CONCLUSIÓN Teniendo en cuenta las limitaciones de este estudio, la conclusión fue la siguiente: El chorreado parece ser más eficaz que el grabado ácido con AF en caliente como tratamiento de superficie para mejorar la adhesión entre la circona y el cemento de resina.
INTRODUCTION AND OBJECTIVES In the search for the ideal restorative material in current Prosthetic Dentistry, zirconia has aroused a special interest among researchers in the field. However, despite its excellent mechanical properties and acceptable aesthetic behavior, there is substantial concern regarding its adhesion capacity due to the absence of a glassy phase in its structure. In an attempt to build a reliable and universal bonding protocol, numerous techniques have been developed which, mechanically, chemically or in combination, pursue to prepare the zirconia surface to achieve a greater contact with the luting agent. Among the existing surface treatment methods, the application of chemical solutions of hydrofluoric acid (AF) has been proposed. Although this technique has been mentioned in dental literature, its use in low concentration and with heat has not been studied exhaustively. Therefore, the objective of the present study was to evaluate the bond strength between zirconia and resin cement resulting from the application of a hot, low-concentration acid etching technique on the zirconia surface. MATERIAL AND METHODS A total of 32 zirconia discs (Ø 10 x h 3 mm) were randomly assigned to either a group that was subjected to the sandblasting technique with aluminum particles (group C) or to another group that was subjected to the acid etching technique with AF at 100°C for 10 minutes (group HE). After the corresponding surface treatments, a primer layer was applied, and the discs of each group were matched with each other using a resin cement. The specimens were stored in water for 24 hours, and then were artificially aged through a 5000-cycle thermocycling process. Finally, shear bond strength tests were carried out. The maximum values of resistance to shear forces (MPa) were recorded and statistically analyzed through the Student's t-test. The level of significance was set at p≤0.05.10 RESULTS Statistically significant differences (p≤0.05) were found between the results of the two study groups. The highest shear strength values corresponded to group C (10.98±5.48), well below those obtained in group HE (5.20±0.86). CONCLUSION Within the limitations of this study, the following conclusion could be drawn: Sandblasting seems to be more effective than hot AF acid etching as a surface treatment to improve the adhesion between zirconia and resin cement.
Description
Keywords
Citation
1.Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, et al.Dentist Material Selection for Single-Unit Crowns: Findings from The NationalDental Practice-Based Research Network. J Dent. 2016 Dec;55:40–7. 2. Roberts HW, Berzins DW, Moore BK, Charlton DG. Metal-Ceramic Alloys in Dentistry: A Review. Journal of Prosthodontics. 2009;18(2):188–94. 3. Reitemeier B, Hänsel K, Kastner C, Walter MH. Metal-ceramic failure in noble metal crowns: 7-year results of a prospective clinical trial in private practices. Int J Prosthodont. 2006 Aug;19(4):397–9. 4. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dental Materials. 2011 Jan;27(1):83–96. 5. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental Materials. 2008 Mar 1;24(3):299–307. 6. Martínez Rus F, Pradíes Ramiro G, Suárez García MJ, Rivera Gómez B. Cerámicas dentales: clasificación y criterios de selección. RCOE [Internet]. 2007 Dec;12(4). 7. Gracis S, Thompson V, Ferencz J, Silva N, Bonfante E. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int J Prosthodont. 2016 May;28(3):227–35. 8. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature. 1975 Dec;258(5537):703–4. 9. Bhat R, Makan G, Harish P, Vaidya K, Bhojaraju N. Zirconia ceramics as a dental biomaterial – an overview. undefined [Internet]. 2012 10. Venezia P, Torsello F, Cavalcanti R, D’Amato S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia prostheses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent. 2015 Oct;114(4):506–12. 11. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019 Jul 4;19:134. 12. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont. 2013 May;5(2):161–6. 13. Li RWK, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: State of the art. Journal of Prosthodontic Research. 2014 Oct;58(4):208–16. 14. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. Journal of Prosthodontic Research. 2013 Oct;57(4):236–61. 15. Ferrari M, Vichi A, Zarone F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dental Materials. 2015 Mar 1;31(3):e63–76. 16. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. Journal of Oral Rehabilitation. 2010;37(8):641–52. 17. Wille S, Zumstrull P, Kaidas V, Jessen LK, Kern M. Low temperature degradation of single layers of multilayered zirconia in comparison to conventional unshaded zirconia: Phase transformation and flexural strength. J Mech Behav Biomed Mater.2018 Jan 1;77:171–5. 18. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dental Materials. 2010 Aug;26(8):807–20. 19. Warreth A, Elkareimi Y. All-ceramic restorations: A review of the literature. The Saudi Dental Journal. 2020 Dec;32(8):365–72. 20. Peláez J, Cogolludo PG, Serrano B, Lozano JFL, Suárez MJ. A prospective evaluation of zirconia posterior fixed dental prostheses: Three-year clinical results.The Journal of Prosthetic Dentistry. 2012 Jun;107(6):373–9. 21. Pihlaja J, Näpänkangas R, Raustia A. Early complications and short-term failures of zirconia single crowns and partial fixed dental prostheses. The Journal of Prosthetic Dentistry. 2014 Oct;112(4):778–83. 22. Tsumita M, Kokubo Y, Ohkubo C, Sakurai S, Fukushima S. Clinical evaluation of posterior all-ceramic FPDs (Cercon): A prospective clinical pilot study. Journal of Prosthodontic Research. 2010 Apr 1;54(2):102–5. 23. NISTOR L, GRĂDINARU M, RÎCĂ R, MĂRĂȘESCU P, STAN M, MANOLEA H, et al. Zirconia Use in Dentistry - Manufacturing and Properties. Curr Health Sci J. 2019;45(1):28–35. 24. Benetti P, Kelly JR, Sanchez M, Della Bona A. Influence of thermal gradients on stress state of veneered restorations. Dental Materials. 2014 May;30(5):554–63. 25. Tezulas E, Yildiz C, Kucuk C, Kahramanoglu E. Current status of zirconia-based all-ceramic restorations fabricated by the digital veneering technique: a comprehensive review. International Journal of Computerized Dentistry. :14. 26. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dental Materials. 2012 Apr 1;28(4):449–56. 27. Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont. 2012 Aug;4(3):162–9. 28. Lin WS, Ercoli C, Feng C, Morton D. The Effect of Core Material, Veneering Porcelain, and Fabrication Technique on the Biaxial Flexural Strength and Weibull Analysis of Selected Dental Ceramics: Journal of Prosthodontics. 2012 Jul;21(5):353–62. 29. Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dentistry Journal. 2019 Sep;7(3):90. 30. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial Y�TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016 Jan 1;42(1 Pt B):1077–85. 31. Muñoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. Journal of Dentistry. 2017 Aug;63:94–102. 32. Scaminaci Russo D, Cinelli F, Sarti C, Giachetti L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent J (Basel). 2019 Aug 1;7(3):74. 33. Adhesion to Zirconia Used for Dental Restorations: A Systematic Review and Meta-Analysis. The Journal of Adhesive Dentistry. 2015 Feb 24;17(1):7–26. 34. Murillo-Gómez F, Palma-Dibb RG, De Goes MF. Effect of acid etching on tridimensional microstructure of etchable CAD/CAM materials. Dental Materials. 2018 Jun;34(6):944–55. 35. Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B. Meta-analysis of Bonding Effectiveness to Zirconia Ceramics. J Dent Res. 2014 Apr 1;93(4):329–34. 36. Akyil MS, Uzun IH, Bayindir F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg. 2010 Dec;28(6):801–8. 37. Erdem A, Akar GC, Erdem A, Kose T. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics. Oper Dent. 2014 Jun;39(3):E118-127. 38. Ruyter EI, Vajeeston N, Knarvang T, Kvam K. A novel etching technique for surface treatment of zirconia ceramics to improve adhesion of resin-based luting cements. Acta Biomater Odontol Scand. 2017 Apr 14;3(1):36–46. 39. Hallmann L, Ulmer P, Wille S, Polonskyi O, Köbel S, Trottenberg T, et al. Effect of surface treatments on the properties and morphological change of dental zirconia. The Journal of Prosthetic Dentistry. 2016 Mar;115(3):341–9. 40. Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Nigerian Journal of Clinical Practice. 2019 Nov 1;22(11):1475. 41. Derand T, Molin M, Kvam K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dental Materials. 2005 Dec;21(12):1158–62. 42. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T. Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci. 2013 Jan;28(1):259–66. 43. Everson P, Addison O, Palin WM, Burke FJT. Improved bonding of zirconia substructures to resin using a “glaze-on” technique. Journal of Dentistry. 2012 Apr;40(4):347–51. 44. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. The Journal of Prosthetic Dentistry. 2007 Nov;98(5):379–88. 45. Özcan M, Nijhuis H, Valandro LF. Effect of Various Surface Conditioning Methods on the Adhesion of Dual-cure Resin Cement with MDP Functional Monomer to Zirconia after Thermal Aging. Dent Mater J. 2008;27(1):99–104. 46. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, et al.Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep. 2017 Apr;7(1):45563. 47. Bömicke W, Schürz A, Krisam J, Rammelsberg P, Rues S. Durability of Resin�Zirconia Bonds Produced Using Methods Available in Dental Practice. J Adhes Dent. 2016;18(1):17–27. 48. Yang L, Xie H, Meng H, Wu X, Chen Y, Zhang H, et al. Effects of Luting Cements and Surface Conditioning on Composite Bonding Performance to Zirconia. J Adhes Dent. 2018;20(6):549–58. 49. Evaluation of the shear bond strength of resin cement to Y‐TZP ceramic after different surface treatments. [cited 2022 Jun 21]; Available from: https://onlinelibrary.wiley.com/doi/10.1002/sca.21142 50. Comino-Garayoa R, Peláez J, Tobar C, Rodríguez V, Suárez MJ. Adhesion to Zirconia: A Systematic Review of Surface Pretreatments and Resin Cements.Materials (Basel). 2021 May 22;14(11):2751. 51. Ahn JS, Yi YA, Lee Y, Seo DG. Shear Bond Strength of MDP-Containing Self�Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer�Containing Primers. BioMed Research International. 2015;2015:1–6. 52. Kern M. Bonding to oxide ceramics—Laboratory testing versus clinical outcome. Dental Materials. 2015 Jan;31(1):8–14. 53. Zhao L, Jian YT, Wang XD, Zhao K. Bond strength of primer/cement systems to zirconia subjected to artificial aging. The Journal of Prosthetic Dentistry. 2016 Nov;116(5):790–6. 54. Yagawa S, Komine F, Fushiki R, Kubochi K, Kimura F, Matsumura H. Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. Journal of Prosthodontic Research. 2018 Apr;62(2):204–9. 55. Liu X, Jiang X, Xu T, Zhao Q, Zhu S. Investigating the shear bond strength of five resin-based luting agents to zirconia ceramics. J Oral Sci. 2020;62(1):84–8. 56. Blatz MB, Alvarez M, Sawyer K, Brindis M. How to Bond Zirconia: The APC Concept. 2016;37(9):8. 57. Subaşı MG, Inan Ö. Influence of surface treatments and resin cement selection on bonding to zirconia. Lasers Med Sci. 2014 Jan;29(1):19–27. 58. Thammajaruk P, Blatz MB, Buranadham S, Guazzato M, Wang Y. Shear bond strength of composite cement to alumina-coated versus tribochemical silica-treated zirconia. Journal of the Mechanical Behavior of Biomedical Materials. 2020 May 1;105:103710. 59. Jo EH, Huh YH, Ko KH, Park CJ, Cho LR. Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent. J Adv Prosthodont. 2018;10(5):374. 60. Kaimal A. Evaluation of Effect of Zirconia Surface Treatment, Using Plasma of Argon and Silane, on the Shear Bond Strength of Two Composite Resin Cements. JCDR [Internet]. 2017 61. Wandscher V, Prochnow C, Rippe M, Dorneles L, Callegari G, Baldissara P, et al.Retentive Strength of Y-TZP Crowns: Comparison of Different Silica Coating Methods on the Intaglio Surfaces. Operative Dentistry. 2017 Sep 1;42(5):E121–33. 62. Kang YJ, Shin Y, Kim JH. Effect of Low-Concentration Hydrofluoric Acid Etching on Shear Bond Strength and Biaxial Flexural Strength after Thermocycling.Materials. 2020 Mar 20;13(6):1409. 63. Zhang Q, Yao C, Yuan C, Zhang H, Liu L, Zhang Y, et al. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching. Mater Res Express. 2020 Sep 1;7(9):095403. 64. Sriamporn T, Thamrongananskul N, Busabok C, Poolthong S, Uo M, Tagami J.Dental zirconia can be etched by hydrofluoric acid. Dent Mater J. 2014;33(1):79–85. 65. Komine F, Fushiki R, Koizuka M, Taguchi K, Kamio S, Matsumura H. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework. J Oral Sci. 2012;54(1):39–46. 66. Menezes FCH de, Borges GA, Valentino TA, Oliveira MAH de M, Turssi CP,Correr-Sobrinho L. Effect of surface treatment and storage on the bond strength of different ceramic systems. Brazilian Journal of Oral Sciences. 2009;8(3):119–23. 67. Liu D, Tsoi JKH, Matinlinna JP, Wong HM. Effects of some chemical surface modifications on resin zirconia adhesion. Journal of the Mechanical Behavior of Biomedical Materials. 2015 Jun 1;46:23–30. 68. Harb O, Al-Zordk W, Özcan M, Sakrana AA. Influence of Hydrofluoric and Nitric Acid Pre-Treatment and Type of Adhesive Cement on Retention of Zirconia Crowns. Materials (Basel). 2021 Feb 18;14(4):960. 69. Xie H, Shen S, Qian M, Zhang F, Chen C, Tay FR. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study. PLOS ONE. 2015 Aug 24;10(8):e0136263. 70. Özcan M, Melo RM, Souza ROA, Machado JPB, Felipe Valandro L, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Journal of the Mechanical Behavior of Biomedical Materials. 2013 Apr;20:19–28. 71. Souza ROA, Valandro LF, Melo RM, Machado JPB, Bottino MA, Özcan M. Air–particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. Journal of the Mechanical Behavior of Biomedical Materials. 2013 Oct;26:155–63. 72. Okutan Y, Yucel MT, Gezer T, Donmez MB. Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y�TZP ceramic and resin cement. Dent Mater J. 2019 Mar 28;38(2):241–9. 73. Tanış MÇ, Akay C, Karakış D. Resin cementation of zirconia ceramics with different bonding agents. Biotechnol Biotechnol Equip. 2015 Mar 4;29(2):363–7. 74. Inokoshi M, Kameyama A, De Munck J, Minakuchi S, Van Meerbeek B. Durable bonding to mechanically and/or chemically pre-treated dental zirconia. Journal of Dentistry. 2013 Feb;41(2):170–9. 75. Steiner R, Heiss-Kisielewsky I, Schwarz V, Schnabl D, Dumfahrt H, Laimer J, et al.Zirconia Primers Improve the Shear Bond Strength of Dental Zirconia. Journal of Prosthodontics. 2020;29(1):62–8. 76. Lang R, Hiller KA, Kienböck L, Friedl K, Friedl KH. Influence of autoclave sterilization on bond strength between zirconia frameworks and Ti-base abutments using different resin cements. The Journal of Prosthetic Dentistry. 2022 Apr 1;127(4):617.e1-617.e6. 77. Pitta J, Burkhardt F, Mekki M, Fehmer V, Mojon P, Sailer I. Effect of airborne�particle abrasion of a titanium base abutment on the stability of the bonded interface and retention forces of crowns after artificial aging. The Journal of Prosthetic Dentistry. 2021 Aug 1;126(2):214–21. 78. Kemarly K, Arnason S, Parke A, Lien W, Vandewalle K. Effect of Various Surface Treatments on Ti-Base Coping Retention. Operative Dentistry. 2020 Jul 1;45(4):426–34. 79. Alkhadashi A, Güven M, Erol F, Yıldırım G. The Effect of Different Combinations of Surface Treatments and Bonding Agents on the Shear Bond Strength Between Titanium Alloy and Lithium Disilicate Glass-Ceramic. Int J Periodontics Restorative Dent. 2020 Mar;40(2):271–6. 80. El-Askary FMS, Nassif MSA, Andrade AM, Reis A, Loguercio AD. Effect of surface area and air-drying distance on shear bond strength of etch-and-rinse adhesive. Braz oral res. 2012 Jul 19;26(5):418–23. 81. Lopes GRS, Ramos NC, Grangeiro MTV, Matos JDM, Bottino MA, Özcan M, et al. Adhesion between zirconia and resin cement: A critical evaluation of testing methodologies. Journal of the Mechanical Behavior of Biomedical Materials. 2021 Aug 1;120:104547. 82. Celik G, Ismatullaev A, Sari T, Usumez A. Comparison of the Effectiveness of Bonding Composite to Zirconia as a Repair Method. Int J Appl Ceram Technol. 2016 Mar;13(2):405–11. 83. Sirisha K, Rambabu T, Ravishankar Y, Ravikumar P. Validity of bond strength tests: A critical review-Part II. J Conserv Dent. 2014;17(5):420–6. 84. Braga RR, Meira JBC, Boaro LCC, Xavier TA. Adhesion to tooth structure: a critical review of ‘macro’ test methods. Dent Mater. 2010 Feb;26(2):e38-49. 85. Mosharraf R, Rismanchian M, Savabi O, Ashtiani AH. Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J Adv Prosthodont. 2011;3(4):221.