Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces

Impacto

Downloads

Downloads per month over past year

Hernández, Francisco L. and Ruiz Bermejo, César and Sanchiz Alonso, Mauro (2022) Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116 (4). ISSN 1578-7303

[thumbnail of s13398-022-01298-2.pdf]
Preview
PDF
Creative Commons Attribution.

345kB

Official URL: https://doi.org/10.1007/s13398-022-01298-2



Abstract

Relative weakly compact sets and weak convergence in variable exponent Lebesgue spaces L p(·) () for infinite measure spaces (, μ) are characterized. Criteria recently obtained in [14] for finite measures are here extended to the infinite measure case. In particular, it is showed that the inclusions between variable exponent Lebesgue spaces for infinite measures are never L-weakly compact. A lattice isometric representation of L p(·) () as a variable exponent space Lq(·) (0, 1) is given.


Item Type:Article
Additional Information:

CRUE-CSIC (Acuerdos Transformativos 2022)

Subjects:Sciences > Mathematics > Mathematical analysis
ID Code:74087
Deposited On:05 Aug 2022 10:26
Last Modified:05 Aug 2022 10:30

Origin of downloads

Repository Staff Only: item control page