Publication:
Recent arrivals to the main asteroid belt

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-08-16
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Srpinger
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The region where the main asteroid belt is now located may have started empty, to become populated early in the history of the Solar system with material scattered outward by the terrestrial planets and inward by the giant planets. These dynamical pathways toward the main belt may still be active today. Here, we present results from a data mining experiment aimed at singling out present-day members of the main asteroid belt that may have reached the belt during the last few hundred years. Probable newcomers include 2003 BM1, 2007 RS62, 457175 (2008 GO98), 2010 BG18, 2010 JC58, 2010 JV52, 2010 KS6, 2010 LD74, 2010 OX38, 2011 QQ99, 2013 HT149, 2015 BH103, 2015 BU525, 2015 RO127, 2015 RS139, 2016 PC41, 2016 UU231, 2020 SA75, 2020 UO43, and 2021 UJ5, all of them in the outer belt. Some of these candidates may have been inserted in their current orbits after experiencing relatively recent close encounters with Jupiter. We also investigated the likely source regions of such new arrivals. Asteroid 2020 UO43, if real, has a non-negligible probability of having an origin in the Oort cloud or even interstellar space. Asteroid 2003 BM1 may have come from the neighborhood of Uranus. However, most newcomers—including 457175, 2011 QQ99, and 2021 UJ5—might have had an origin in Centaur orbital space. The reliability of these findings is assessed within the context of the uncertainties of the available orbit determinations.
Description
Unesco subjects
Keywords
Citation
Aarseth, S.J.: Gravitational N-Body Simulations. Cambridge University Press, Cambridge (2003) Agarwal, J., Jewitt, D., Mutchler, M., Weaver, H., Larson, S.: A binary main-belt comet. Nature 549(7672), 357–359 (2017) Agarwal, J., Kim, Y., Jewitt, D., Mutchler, M., Weaver, H., Larson, S.: Component properties and mutual orbit of binary main-belt comet 288P/(300163) 2006 VW139. Astron. Astrophys. 643, A152 (2020). https://doi.org/10.1051/0004-6361/202038195 Alfvén, H.: On the origin of the asteroids. Icarus 3(1), 52–56 (1964). https://doi.org/10.1016/0019-1035(64)90030-2 Bailey, B.L., Malhotra, R.: Two dynamical classes of centaurs. Icarus 203(1), 155–163 (2009). https://doi.org/10.1016/j.icarus.2009.03.044,0906.4795 Bannister, M.T., Bhandare, A., Dybczyński, P.A., Fitzsimmons, A., Oumuamua ISSI Team, et al.: The natural history of ‘Oumuamua. Nat. Astron. 3, 594–602 (2019). https://doi.org/10.1038/s41550-019-0816-x Barucci, M.A., Brown, M.E., Emery, J.P., Merlin, F.: Composition and Surface Properties of Transneptunian Objects and Centaurs, p. 143. University of Arizona Press, Tucson (2008) Bernardi, F.: Next challenges for the NEODyS and AstDyS data processing systems. In: IAU General Assembly, vol 29, p 2235184 (2015) https://ui.adsabs.harvard.edu/abs/2015IAUGA..2235184B/abstract Bobrovnikoff, N.T.: The origin of asteroids. PASP 43(255), 324 (1931). https://doi.org/10.1086/124152 Borysenko, S., Baransky, A., Musiichuk, E.: Photometric observations of ecliptic comet 47P/Ashbrook-Jackson and selected quasi-Hilda and main-belt comets at Kyiv Comet Station (MPC code-585) in 2017. Icarus 317, 44–47 (2019). https://doi.org/10.1016/j.icarus.2018.07.003 Bottke, J., William, F., Vokrouhlický, D., Rubincam, D.P., Nesvorný, D.: The Yarkovsky and Yorp effects: implications for asteroid dynamics. Ann. Rev. Earth Planet. Sci. 34, 157–191 (2006). https://doi.org/10.1146/annurev.earth.34.031405.125154 Brož, M., Vokrouhlický, D.: Asteroid families in the first-order resonances with Jupiter. Mon. Not. R. Astron. Soc. 390(2), 715–732 (2008). https://doi.org/10.1111/j.1365-2966.2008.13764.x Carruba, V., Morbidelli, A.: On the first ν6 anti-aligned librating asteroid family of Tina. Mon. Not. R. Astron. Soc. 412(3), 2040–2051 (2011). https://doi.org/10.1111/j.1365-2966.2010.18083.x Carruba, V., Nesvorný, D., Aljbaae, S., Huaman, M.E.: Dynamical evolution of the Cybele asteroids. Mon. Not. R. Astron. Soc. 451(1), 244–256 (2015). https://doi.org/10.1093/mnras/stv997 Carruba, V., Nesvorný, D., Vokrouhlický, D.: Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151(6), 164 (2016). https://doi.org/10.3847/0004-6256/151/6/164 Carruba, V., Vokrouhlický, D., Nesvorný, D.: Detection of the Yarkovsky effect for C-type asteroids in the Veritas family. Mon. Not. R. Astron. Soc. 469(4), 4400–4413 (2017). https://doi.org/10.1093/mnras/stx1186 Chamberlin, A.B., Yeomans, D.K., Chodas, P.W., Giorgini, J.D., Jacobson, R.A., Keesey, M.S., et al.: JPL solar system dynamics WWW site. In: AAS/Division for Planetary Sciences Meeting Abstracts #29, AAS/Division for Planetary Sciences Meeting Abstracts, vol 29, p 21.06 (1997) https://ui.adsabs.harvard.edu/abs/1997DPS....29.2106C/abstract Chandler, C.O., Trujillo, C.A., Hsieh, H.H.: Recurrent activity from active asteroid (248370) 2005 QN173: a main-belt comet. Astrophys. J. Lett. 922(1), L8 (2021). https://doi.org/10.3847/2041-8213/ac365b Chebotarev, G.A.: On the dynamical limites of the solar system. Sov. Astron. 8, 787 (1965) Cincotta, P.M., Giordano, C.M., Shevchenko, I.I.: Revisiting the relation between the Lyapunov time and the instability time. Phys. D Nonlinear Phenom. 430, 133101 (2022). https://doi.org/10.1016/j.physd.2021.133101 de la Fuente Marcos, C., de la Fuente Marcos, R.: On the dynamical evolution of 2002 VE68. Mon. Not. R. Astron. Soc. 427(1), 728–739 (2012). https://doi.org/10.1111/j.1365-2966.2012.21936.x de la Fuente Marcos, C., de la Fuente Marcos, R.: Asteroid 2015 DB216: a recurring co-orbital companion to Uranus. Mon. Not. R. Astron. Soc. 453(2), 1288–1296 (2015). https://doi.org/10.1093/mnras/stv1725 de la Fuente Marcos, C., de la Fuente Marcos, R.: Pole, pericenter, and nodes of the interstellar minor body A/2017 U1. Res. Notes Am. Astron. Soc. 1(1), 5 (2017). https://doi.org/10.3847/2515-5172/aa96b4 de la Fuente Marcos, C., de la Fuente Marcos, R., Aarseth, S.J.: Chasing the Chelyabinsk asteroid N-body style. Astrophys. J. 812(1), 26 (2015). https://doi.org/10.1088/0004-637X/812/1/26 de la Fuente Marcos, C., de la Fuente Marcos, R., Licandro, J., Serra-Ricart, M., Martino, S., de León, J., et al.: The active centaur 2020 MK4. Astron. Astrophys. 649, A85 (2021). https://doi.org/10.1051/0004-6361/202039117 de la Fuente, Marcos C., de la Fuente, Marcos R.: Erratum: pole, pericenter, and nodes of the interstellar minor body A/2017 U1. Res. Notes Am. Astron. Soc. 1(1), 9 (2017). https://doi.org/10.3847/2515-5172/aa97d6 Del Vigna, A., Faggioli, L., Milani, A., Spoto, F., Farnocchia, D., Carry, B.: Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data. Astron. Astrophys. 617, A61 (2018). https://doi.org/10.1051/0004-6361/201833153 Di Sisto, R.P., Brunini, A.: The origin and distribution of the Centaur population. Icarus 190(1), 224–235 (2007). https://doi.org/10.1016/j.icarus.2007.02.012 Di Sisto, R.P., Rossignoli, N.L.: Centaur and giant planet crossing populations: origin and distribution. Celest. Mech. Dyn. Astron. 132(6–7), 36 (2020). https://doi.org/10.1007/s10569-020-09971-7 Díaz, C.G., Gil-Hutton, R.: Collisional activation of asteroids in cometary orbits. Astron. Astrophys. 487(1), 363–367 (2008). https://doi.org/10.1051/0004-6361:20079236 Durech, J., Vokrouhlický, D., Pravec, P., Hanuš, J., Farnocchia, D., Krugly, Y.N., et al.: YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus. Astron. Astrophys. 609, 86 (2018). https://doi.org/10.1051/0004-6361/201731465 Farnocchia, D., Chesley, S.R., Vokrouhlický, D., Milani, A., Spoto, F., Bottke, W.F.: Near Earth asteroids with measurable Yarkovsky effect. Icarus 224(1), 1–13 (2013). https://doi.org/10.1016/j.icarus.2013.02.004 Ferraz-Mello, S., Michtchenko, T.A., Nesvorný, D., Roig, F., Simula, A.: The depletion of the Hecuba gap vs the long-lasting Hilda group. Planet. Space Sci. 46(11–12), 1425–1432 (1998). https://doi.org/10.1016/S0032-0633(98)00023-3 Freedman, D., Diaconis, P.: On the histogram as a density estimator:l2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57, 453–476 (1981) Froeschle, C., Scholl, H.: The secular resonance ν6 in the asteroidal belt. Astron. Astrophys. 166(1–2), 326–332 (1986) Froeschle, C., Scholl, H.: Orbital evolution of asteroids near the secular resonance ν6. Astron. Astrophys. 179(1–2), 294–303 (1987) Froeschle, C., Scholl, H.: Secular resonances: new results. Celest. Mech. 43(1–4), 113–117 (1988). https://doi.org/10.1007/BF01234558 Froeschle, C., Scholl, H.: The three principal secular resonances ν5, ν6, and ν16 in the asteroidal belt. Celest. Mech. Dyn. Astron. 46(3), 231–251 (1989). https://doi.org/10.1007/BF00049260 Galiazzo, M.A., Wiegert, P., Aljbaae, S.: Influence of the Centaurs and TNOs on the main belt and its families. Astrophys. Space Sci. 361(12), 371 (2016). https://doi.org/10.1007/s10509-016-2957-z Gallardo, T.: Atlas of the mean motion resonances in the solar system. Icarus 184(1), 29–38 (2006). https://doi.org/10.1016/j.icarus.2006.04.001 Gallardo, T.: Strength, stability and three dimensional structure of mean motion resonances in the solar system. Icarus 317, 121–134 (2019). https://doi.org/10.1016/j.icarus.2018.07.002 García-Migani, E., Gil-Hutton, R.: The activity and dynamical evolution of quasi-hilda asteroid (457175) 2008 GO98. Planet. Space Sci. 160, 12–18 (2018). https://doi.org/10.1016/j.pss.2018.03.011 Ginsburg, A., Sipőcz, B.M., Brasseur, C.E., Cowperthwaite, P.S., Craig, M.W., Deil, C., Guillochon, J., Guzman, G., Liedtke, S., Lian Lim, P., Lockhart, K.E., Mommert, M., Morris, B.M., Norman, H., Parikh, M., Persson, M.V., Robitaille, T.P., Segovia, J.C., Singer, L.P., Tollerud, E.J., de Val-Borro, M., Valtchanov, I., Woillez, J.: Astroquery collaboration, a subset of astropy collaboration astroquery: an astronomical web-querying package in python. Astron. J. 157(3), 98 (2019). https://doi.org/10.3847/1538-3881/aafc33 Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., et al.: JPL’s on-line solar system data service. In: AAS/Division for Planetary Sciences Meeting Abstracts #28, AAS/Division for Planetary Sciences Meeting Abstracts, vol. 28, pp. 25.04 (1996) Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., et al.: JPL’s on-line solar system ephemeris and data service. In: Bulletin of the American Astronomical Society, vol. 28, pp. 1099 (1997) https://ui.adsabs.harvard.edu/abs/1997BAAS...29.1099G/abstract Giorgini, J.D.: Status of the JPL horizons ephemeris system. In: IAU General Assembly, vol. 29, pp. 2256293 (2015) https://ui.adsabs.harvard.edu/abs/2015IAUGA..2256293G/abstract Giorgini, J.: Summary and status of the horizons ephemeris system. In: Capitaine N (ed) Journ ées Syst èmes de R éf érence Spatio-temporels 2010, pp. 87–87 (2011) Gkotsinas, A., Guilbert-Lepoutre, A., Raymond, S.N., Nesvorny, D.: Thermal processing of jupiter-family comets during their chaotic orbital evolution. Astrophys. J. 928(1), 43 (2022). https://doi.org/10.3847/1538-4357/ac54ac Granvik, M., Morbidelli, A., Vokrouhlický, D., Bottke, W.F., Nesvorný, D., Jedicke, R.: Escape of asteroids from the main belt. Astron. Astrophys. 598, A52 (2017). https://doi.org/10.1051/0004-6361/201629252 Greenberg, A.H., Margot, J.L., Verma, A.K., Taylor, P.A., Hodge, S.E.: Yarkovsky drift detections for 247 near-earth asteroids. Astrophys. J. 159(3), 92 (2020). https://doi.org/10.3847/1538-3881/ab62a3 Greenstreet, S., Farnocchia, D., Lister, T.: Measuring the Yarkovsky effect with Las Cumbres observatory. Icarus 321, 564–571 (2019). https://doi.org/10.1016/j.icarus.2018.11.032 Gundlach, B., Blum, J.: Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive? How hydrostatic compression leads to inactivity. Astron. Astrophys. 589, A111 (2016). https://doi.org/10.1051/0004-6361/201527260 Hainaut, O.R., Meech, K.J., Micheli, M., Belton, M.S.J.: Rendezvous with ‘Oumuamua. Messen. 173, 13–16 (2018). https://doi.org/10.18727/0722-6691/5092 Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 Hasegawa, S., Marsset, M., DeMeo, F.E., Bus, S.J., Geem, J., Ishiguro, M., et al.: Discovery of two TNO-like bodies in the asteroid belt. Astrophys. J. Lett. 916(1), L6 (2021). https://doi.org/10.3847/2041-8213/ac0f05 Helin, E.F., Pravdo, S.H., Rabinowitz, D.L., Lawrence, K.J.: Near-Earth asteroid tracking (NEAT) program. Ann. N. Y. Acad. Sci. 822, 6 (1997). https://doi.org/10.1111/j.1749-6632.1997.tb48329.x Hernandez, S., Hankey, M., Scott, J.: A data pipeline for the minor planet center. In: American Astronomical Society Meeting Abstracts #233, American Astronomical Society Meeting Abstracts, vol. 233, pp. 245.03 (2019) https://ui.adsabs.harvard.edu/abs/2019AAS...23324503H/abstract Holman, M.J., Murray, N.W.: Chaos in high-order mean resonances in the outer asteroid belt. Astron. J. 112, 1278 (1996). https://doi.org/10.1086/118098 Hsieh, H.H., Jewitt, D.: A population of comets in the main asteroid belt. Science 312(5773), 561–563 (2006). https://doi.org/10.1126/science.1125150 Hsieh, H.H., Chandler, C.O., Denneau, L., Fitzsimmons, A., Erasmus, N., Kelley, M.S.P., et al.: Physical characterization of main-belt comet (248370) 2005 QN173. Astrophys. J. Lett. 922(1), L9 (2021). https://doi.org/10.3847/2041-8213/ac2c62 Huaman, M., Roig, F., Carruba, V., Domingos, R.C., Aljbaae, S.: The resonant population of asteroids in librating states of the ν6 linear secular resonance. Mon. Not. R. Astron. Soc. 481(2), 1707–1717 (2018). https://doi.org/10.1093/mnras/sty2381 Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55 Innanen, K., Mikkola, S., Wiegert, P.: The Earth-Moon system and the dynamical stability of the inner solar system. Astron. J. 116(4), 2055–2057 (1998). https://doi.org/10.1086/300552 Ito, T., Ohtsuka, K.: The Lidov-Kozai oscillation and Hugo von Zeipel. Monogr. Environ. Earth Planets 7(1), 1–113 (2019). https://doi.org/10.5047/meep.2019.00701.0001 Ito, T., Tanikawa, K.: Stability and instability of the terrestrial protoplanet system and their possible roles in the final stage of planet formation. Icarus 139(2), 336–349 (1999). https://doi.org/10.1006/icar.1999.6112 Ito, T., Tanikawa, K.: Long-term integrations and stability of planetary orbits in our Solar system. Mon. Not. R. Astron. Soc. 336(2), 483–500 (2002). https://doi.org/10.1046/j.1365-8711.2002.05765.x Jewitt, D., Hsieh, H.H.: The Asteroid-Comet Continuum. arXiv e-prints arXiv:2203.01397, (2022) Jewitt, D.: The active centaurs. Astron. J. 137(5), 4296–4312 (2009). https://doi.org/10.1088/0004-6256/137/5/4296 Jewitt, D.: The active asteroids. Astron. J. 143(3), 66 (2012). https://doi.org/10.1088/0004-6256/143/3/66 Jewitt, D., Weaver, H., Mutchler, M., Larson, S., Agarwal, J.: Hubble space telescope observations of main-belt comet (596) Scheila. Astrophys. J. Lett. 733(1), L4 (2011). https://doi.org/10.1088/2041-8205/733/1/L4 Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M., Larson, S.: The extraordinary multi-tailed main-belt comet P/2013 P5. Astrophys. J. Lett. 778(1), L21 (2013). https://doi.org/10.1088/2041-8205/778/1/L21 Jewitt, D., Ishiguro, M., Weaver, H., Agarwal, J., Mutchler, M., Larson, S.: Hubble space telescope investigation of main-belt comet 133P/Elst-Pizarro. Astron. J. 147(5), 117 (2014). https://doi.org/10.1088/0004-6256/147/5/117 Kaiser, N.: Pan-STARRS: a wide-field optical survey telescope array. In: Oschmann, J., Jacobus, M. (ed) Ground-based Telescopes, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 5489, pp 11–22, (2004) https://doi.org/10.1117/12.552472 Kim, Y., Agarwal, J., Jewitt, D.: Evidence for active asteroid 288P being triple. In: AAS/Division for Planetary Sciences Meeting Abstracts, AAS/Division for Planetary Sciences Meeting Abstracts, vol. 52, pp. 217.01 (2020) https://ui.adsabs.harvard.edu/abs/2020DPS....5221701K/abstract Knezevic, Z., Milani, A.: Asteroids dynamic site-AstDyS. In: IAU Joint Discussion, pp. P18 (2012) https://ui.adsabs.harvard.edu/abs/2012IAUJD...7P..18K/abstract Kokhirova, G.I., Ivanova, O.V., Rakhmatullaeva, F.D., Baransky, A.V., Buriev, A.M.: Results of observations of dual-status object 2008 GO98 in 2017. Adv. Space Res. 67(1), 639–647 (2021). https://doi.org/10.1016/j.asr.2020.10.014 Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962). https://doi.org/10.1086/108790 Królikowska, M., Dybczyński, P.A.: Oort spike comets with large perihelion distances. Mon. Not. R. Astron. Soc. 472(4), 4634–4658 (2017). https://doi.org/10.1093/mnras/stx2157 Kuiper, G.P.: On the origin of asteroids. Astron. J. 55, 164 (1950). https://doi.org/10.1086/106384 Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011). https://doi.org/10.1051/0004-6361/201116836 Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9(10), 719–759 (1962). https://doi.org/10.1016/0032-0633(62)90129-0 Lopez, A., Pacheco, R., Sanchez, S., Nomen, J., McGaha, J.E., Rogers, J.E., et al.: 2003 BM1. Minor Planet Electronic Circulars 2003-B29 (2003) https://ui.adsabs.harvard.edu/abs/2003MPEC....B...29L/abstract Makino, J.: Optimal order and time-step criterion for Aarseth-type N-body integrators. Astrophys. J. 369, 200 (1991). https://doi.org/10.1086/169751 Michel, P., Thomas, F.: The Kozai resonance for near-Earth asteroids with semimajor axes smaller than 2AU. Astron. Astrophys. 307, 310 (1996) Micheli, M., Farnocchia, D., Meech, K.J., Buie, M.W., Hainaut, O.R., Prialnik, D., et al.: Non-gravitational acceleration in the trajectory of 1I/2017 U1 (’Oumuamua). Nature 559, 223–226 (2018). https://doi.org/10.1038/s41586-018-0254-4 Mikkola, S., Lehto, H.J.: Overlong simulations of the solar system dynamics with two alternating step-lengths. Celest. Mech. Dyn. Astron. 134(2), 20 (2022). https://doi.org/10.1007/s10569-021-10058-0 Milani, A., Nobili, A.M.: Asteroid 522 Helga is chaotic and stable. Celest. Mech. Dyn. Astron. 56(1–2), 323–324 (1993). https://doi.org/10.1007/BF00699743 Milani, A., Knežević, Z., Novaković, B., Cellino, A.: Dynamics of the Hungaria asteroids. Icarus 207(2), 769–794 (2010). https://doi.org/10.1016/j.icarus.2009.12.022 Morbidelli, A., Henrard, J.: Secular resonances in the asteroid belt - theoretical perturbation approach and the problem of their location. Celest. Mech. Dyn. Astron. 51(2), 131–167 (1991). https://doi.org/10.1007/BF00048606 Morbidelli, A., Henrard, J.: The main secular resonances ν6, vs and ν16 in the asteroid belt. Celest. Mech. Dyn. Astron. 51(2), 169–197 (1991). https://doi.org/10.1007/BF00048607 Moreno, F., Licandro, J., Cabrera-Lavers, A., Pozuelos, F.J.: Dust loss from activated asteroid P/2015 X6. Astrophys. J. 826(2), 137 (2016). https://doi.org/10.3847/0004-637X/826/2/137 Moreno, F., Licandro, J., Cabrera-Lavers, A., Pozuelos, F.J.: Early evolution of disrupted asteroid P/2016 G1 (PANSTARRS). Astrophys. J. Lett. 826(2), L22 (2016). https://doi.org/10.3847/2041-8205/826/2/L22 Moreno, F., Jehin, E., Licandro, J., Ferrais, M., Moulane, Y., Pozuelos, F.J., et al.: Dust properties of double-tailed active asteroid (6478) Gault. Astron. Astrophys. 624, L14 (2019). https://doi.org/10.1051/0004-6361/201935526 Moreno, F., Licandro, J., Cabrera-Lavers, A., Morate, D., Guirado, D.: Dust environment of active asteroids P/2019 A4 (PANSTARRS) and P/2021 A5 (PANSTARRS). Mon. Not. R. Astron. Soc. 506(2), 1733–1740 (2021). https://doi.org/10.1093/mnras/stab1841 Murison, M.A., Lecar, M., Franklin, F.A.: Chaotic motion in the outer asteroid belt and its relation to the age of the solar system. Astron. J. 108, 2323 (1994). https://doi.org/10.1086/117245 Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9781139174817 Murray, N., Holman, M.: Diffusive chaos in the outer asteroid belt. Astron. J. 114, 1246–1259 (1997). https://doi.org/10.1086/118558 Napier, W.M., Dodd, R.J.: The missing planet. Nature 242(5395), 250–251 (1973). https://doi.org/10.1038/242250b0 Napier, W.M., Dodd, R.J.: On the origin of the asteroids. Mon. Not. R. Astron. Soc. 166, 469–490 (1974). https://doi.org/10.1093/mnras/166.2.469 Nugent, C.R., Margot, J.L., Chesley, S.R., Vokrouhlický, D.: Detection of semimajor axis drifts in 54 near-earth asteroids: new measurements of the Yarkovsky effect. Astron. J. 144(2), 60 (2012). https://doi.org/10.1088/0004-6256/144/2/60 Ovenden, M.W.: Physical sciences: Bode’s law and the missing planet. Nature 239(5374), 508–509 (1972). https://doi.org/10.1038/239508a0 Park, R.S., Folkner, W.M., Williams, J.G., Boggs, D.H.: The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 161(3), 105 (2021). https://doi.org/10.3847/1538-3881/abd414 Petit, J.M., Morbidelli, A., Chambers, J.: The primordial excitation and clearing of the asteroid belt. Icarus 153(2), 338–347 (2001). https://doi.org/10.1006/icar.2001.6702 Pravdo, S.H., Rabinowitz, D.L., Helin, E.F., Lawrence, K.J., Bambery, R.J., Clark, C.C., et al.: The Near-Earth asteroid tracking (NEAT) program: an automated system for telescope control, wide-field imaging, and object detection. Astron. J. 117(3), 1616–1633 (1999). https://doi.org/10.1086/300769 Raymond, S.N., Nesvorny, D.: Vesta and Ceres. Insights from the Dawn Mission for the Origin of the Solar System, by Simone Marchi, Carol A. Raymond, and Christopher T., ISBN: 978-1-108-47973-8. Cambridge, UK: Cambridge University Press, 2022, p. 227https://ui.adsabs.harvard.edu/abs/2022vcid.book..227R/abstract Raymond, S.N., Izidoro, A.: The empty primordial asteroid belt. Sci. Adv. 3(9), e1701138 (2017). https://doi.org/10.1126/sciadv.1701138 Roberts, A.C., Muñoz-Gutiérrez, M.A.: Dynamics of small bodies in orbits between Jupiter and Saturn. Icarus 358, 114201 (2021). https://doi.org/10.1016/j.icarus.2020.114201 Roig, F., Nesvorný, D., Ferraz-Mello, S.: Asteroids in the 2: 1 resonance with Jupiter: dynamics and size distribution. Mon. Not. R. Astron. Soc. 335(2), 417–431 (2002). https://doi.org/10.1046/j.1365-8711.2002.05635.x Rudenko, M.: Minor planet center data processing challenges. In: IAU General Assembly, vol. 29, pp. 2253004 (2015) https://ui.adsabs.harvard.edu/abs/2015IAUGA..2253004R/abstract Rudenko, M.: Minor Planet Center: data processing challenges. In: Chesley, S. R., Morbidelli, A., Jedicke, R., Farnocchia, D. (eds.) Asteroids: New Observations, New Models, Cambridge University Press, Cambridge, vol. 318, pp. 265–269, (2016) https://doi.org/10.1017/S174392131500839X Seligman, D., Laughlin, G., Batygin, K.: On the anomalous acceleration of 1I/2017 U1 ‘Oumuamua. Astrophys. J. Lett. 876(2), L26 (2019). https://doi.org/10.3847/2041-8213/ab0bb5 Shevchenko, I.I.: On the recurrence and Lyapunov time scales of the motion near the chaos border. Phys. Lett. A 241(1–2), 53–60 (1998). https://doi.org/10.1016/S0375-9601(98)00093-0 Stokes, G.H., Evans, J.B., Viggh, H.E.M., Shelly, F.C., Pearce, E.C.: Lincoln near-earth asteroid program (LINEAR). Icarus 148(1), 21–28 (2000). https://doi.org/10.1006/icar.2000.6493 Tanikawa, K., Ito, T.: Subsystems in a stable planetary system. Publ. Astron. Soc. Jpn. 59, 989 (2007). https://doi.org/10.1093/pasj/59.5.989 van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37 Van Rossum, G., Drake, F.L.: Python Tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands (1995) Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA (2009) Vinogradova, T.A.: Amplitude of the Lidov-Kozai I and e oscillations in asteroid families. Mon. Not. R. Astron. Soc. 468(4), 4719–4724 (2017). https://doi.org/10.1093/mnras/stx743 von Zeipel, H.: Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183 (22):345, (1910) https://doi.org/10.1002/asna.19091832202 Wall, J.V., Jenkins, C.R.: Practical Statistics for Astronomers. Cambridge University Press, Cambridge (2012) Williams, J.G.: Secular Perturbations in the Solar System. PhD thesis, University of California, Los Angeles (1969) Winter, O.C., Mourão, D.C., Giuliatti Winter, S.M.: Short Lyapunov time: a method for identifying confined chaos. Astron. Astrophys. 523, A67 (2010). https://doi.org/10.1051/0004-6361/200912734 Wong, I., Mishra, A., Brown, M.E.: Photometry of active centaurs: colors of dormant active centaur nuclei. Astron. J. 157(6), 225 (2019). https://doi.org/10.3847/1538-3881/ab1b22 Yoshikawa, M.: A simple analytical model for the secular resonance ν6 in the asteroidal belt. Celest. Mech. 40(3–4), 233–272 (1987). https://doi.org/10.1007/BF01235843
Collections