Publication:
Site-dependent shaping of field potential waveforms

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-08-16
Authors
Herreras, Óscar
Torres, Daniel
Martín Vazquez, Gonzalo
Hernández Recio, Sara
López Madrona, Víctor J
Benito, Nuria
Makarova, Julia
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The activity of neuron populations gives rise to field potentials (FPs) that extend beyond the sources. Their mixing in the volume dilutes the original temporal motifs in a site-dependent manner, a fact that has received little attention. And yet, it potentially rids of physiological significance the time-frequency parameters of individual waves (amplitude, phase, duration). This is most likely to happen when a single source or a local origin is erroneously assumed. Recent studies using spatial treatment of these signals and anatomically realistic modeling of neuron aggregates provide convincing evidence for the multisource origin and site-dependent blend of FPs. Thus, FPs generated in primary structures like the neocortex and hippocampus reach far and cross-contaminate each other but also, they add and even impose their temporal traits on distant regions. Furthermore, both structures house neurons that act as spatially distinct (but overlapped) FP sources whose activation is state, region, and time dependent,making the composition of so-called local FPs highly volatile and strongly site dependent. Since the spatial reach cannot be predicted without source geometry, it is important to assess whether waveforms and temporalmotifs arise froma single source; otherwise, those from each of the co-active sources should be sought.
Description
Keywords
Citation
Andersen P, Bliss TVP, Skrede KK. Lamellar organization of hippocampal excitatory pathways. Exp Brain Res. 1971:13: 222–238. Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 1996:273:1868–1871. Bédard C, Destexhe A. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys J. 2009:96:2589–2603. Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J. 2004:86:1829–1842. Bell A, Sejnowski T. An information-maximization approach to blind separation and blind deconvolution. Neur Comp. 1995:7:1129–1159. Benito N, Fernández-Ruiz A, Makarov VA, Makarova J, Korovaichuk A, Herreras O. Spatial modules of coherent activity in pathwayspecific LFPs in the hippocampus ref lect topology and different modes of presynaptic synchronization. Cereb Cortex. 2014:24:1738–1752. Benito N, Martín-Vázquez G, Makarova J, Makarov VA, Herreras O. The right hippocampus leads the bilateral integration of gammaparsed lateralized information. Elife. 2016:5:e16658. Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS. Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci. 2008:2:2. Bereshpolova Y, Stoelzel CR, Su C, Alonso JM, Swadlow HA. Activation of a visual cortical column by a directionally selective thalamocortical neuron. Cell Rep. 2019:27:3733–3740. Berger H. Über das elektroenkephalogramm des menschen. Arch Psych Nerv. 1929:87:527–570. Bertone-Cueto NI,Makarova J,Mosqueira A, García Violini D, Sánchez Peña RS, Herreras O, Belluscio MA, Píriz J. Volume conducted origin of the field potential at the lateral Habenula. Front Neurosci. 2020:13:78. Brankack J, Stewart M, Fox SE. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res. 1993:615:310–327. Bullock TH. Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. PNAS. 1997:94:1–6. Bullock TH, Mcclune MC, Enright JT. Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series. Neuroscience. 2003:121:233–252. Burns SP, Xing,D, Shelley MJ, Shapley RM. 2010. Searching for autocoherence in the cortical network with a time-frequency analysis of the local field potential. J Neurosci 30:4033–4047. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012:13:407–420. Canning KJ, Wu K, Peloquin P, Kloosterman F, Leung LS. Physiology of the entorhinal and perirhinal projections to the hippocampus studied by current source density analysis. Ann N Y Acad Sci. 2000:911:55–72. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore C. Driving fast-spiking cells induces gamma rhythms and controls sensory responses. Nature. 2009:459:663–667. Carmichael JE, Gmaz JM, van der Meer MAA. Gamma oscillations in the rat ventral striatum originate in the piriform cortex. J Neurosci. 2017:37:7962–7974. Clawson BC, Durkin J, Suresh AK, Pickup EJ, Broussard CG, Aton SJ. Sleep promotes, and sleep loss inhibits, selective changes in firing rate, response properties and functional connectivity of primary visual cortex neurons. Front Syst Neurosci. 2018:12:40. Cole SR, Voytek B. Brain oscillations and the importance of waveform shape. Trends Cogn Sci. 2017:21:137–149. Di S, Baumgartner C, Barth DS. Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. J Neurophysiol. 1990:63:832–840. Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O. Is spreading depolarization characterized by an abrupt, massive release of Gibbs free energy from the human brain cortex? Neuroscientist. 2013:19:25–42. Elul R. Dipoles of spontaneous activity in the cerebral cortex. Exp Neurol. 1962:6:285–299. Elul R. The genesis of the EEG. Int Rev Neurobiol. 1971:15:228–272. Fernández-Ruiz A, Makarov VA, Benito N, Herreras O. Schafferspecific local field potentials ref lect discrete excitatory events at gamma-frequency that may fire postsynaptic hippocampal CA1 units. J Neurosci. 2012a:32:5165–5176. Fernández-Ruiz A, Makarov VA, Herreras O. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo. Front Neural Circuits. 2012b:6:71. Fernández-Ruiz A, Muñoz S, Sancho M, Makarova J, Makarov VA, Herreras O. Cytoarchitectonic and dynamic origins of giant positive LFPs in the dentate gyrus. J Neurosci. 2013:33:15518–15532. Freeman WJ. Mass action in the nervous system: examination of the neurophysiological basis of adaptive behavior through the EEG. New York: Academic Press; 1975 Głąbska H, Potworowski J, Łe˛ski S, Wójcik DK. Independent components of neural activity carry information on individual populations. PLoS One. 2014:9:8.e105071. Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985:2: 327–354. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehab. 2008:5:25. Güllmar D, Haueisen J, Reichenbach JR. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study. NeuroImage. 2010:51:145–163. Haberly LB, Shepherd GM. Current density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol. 1973:36:789–803. Hales CG, Pockett S. The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Front Syst Neurosci. 2014:8:233. Herreras O. Local field potentials: myths and misunderstandings. Front Neural Circuits. 2016:10:101. Herreras O, Makarova J. Mechanisms of the negative potential associated with Leao’s spreading depolarization: a history of brain electrogenesis. JCBFM. 2020:40:1934–1952. Herreras O, Makarova J, Makarov VA. New uses for LFPs: pathwayspecific threads obtained through spatial discrimination. Neuroscience. 2015:310:486–503. Ho ECY, Strüber M, Bartos M, Zhang L, Skinner FK. Inhibitory networks of fast-spiking interneurons generate slow population activities due to excitatory fluctuations and network multistability. J Neurosci. 2012:32:9931–9946. Jones MW, Wilson MA. Theta rhythms coordinate hippocampalprefrontal interactions in a spatial memory task. PLoS Biol. 2005:3:12.e402. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron. 2009:61:35–41. Klee M, Rall W. Computed potentials of cortically arranged populations of neurons. J Neurophysiol. 1977:40:647–666. Kocsis B, Thinschmidt JS, Kinney GG, Vertes RP. Separation of hippocampal theta dipoles by partial coherence analysis in the rat. Brain Res. 1994:660:341–345. Kolb FP, Arnold G, Lerch R, Straka H, Büttner-Ennever J. Spatial distribution of field potential profiles in the cat cerebellar cortex evoked by peripheral and central inputs. Neuroscience. 1997:81:1155–1181. Kopell N, LeMasson G. Rhythmogenesis, amplitude modulation, and multiplexing in a cortical structure. PNAS. 1994:91:10586–10590. Korovaichuk A, Makarova J, Makarov VA, Benito N, Herreras O. Minor contribution of principal excitatory pathways to hippocampal LFPs in the anesthetized rat: a combined independent component and current source density study. J Neurophysiol. 2010:104:484–497. Lalla L, Rueda Orozco PE, Jurado-Parras MT, Brovelli A, Robbe D. Local or not local: investigating the nature of striatal theta oscillations in behaving rats. ENeuro. 2017:4:5. Leung LS, Roth L, Canning KJ. Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study. J Neurophysiol. 1995:73:2392–2403. Li CL, Bak AF, Parker LO. Specific resistivity of the cerebral cortex and white matter. Exp Neurol. 1968:20:544–557. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll G. Modeling the spatial reach of the LFP. Neuron. 2011:72:859–872. Liu J, Newsome WT. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci. 2006:26:7779–7790. Liu X, Zhou L, Ding F, Wang Y, Yan J. Local field potentials are local events in the mouse auditory cortex. Eur J Neurosci. 2015:42:2289–2297. Lockmann AL, Laplagne DA, Leão RN, Tort AB. A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci. 2016:36:5338–5352. López-Aguado L, Ibarz JM, Herreras O. Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience. 2001:108:249–262. López-Aguado L, Ibarz JM, Varona P, Herreras O. Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites. J Neurophysiol. 2002:88:2809–2820. López-Madrona VJ, Pérez-Montoyo E, Álvarez-Salvado E, Moratal D, Herreras O, Pereda E, Mirasso CR, Canals S. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. Elife. 2020:9:e57313. Lorente de Nó R. Analysis of the distribution of action currents of nerves in volume conductors. In: A study of nerve physiology. Vol. 132. New York: The Rockefeller Institute; 1947a. pp. 384–477 Lorente de Nó R. Action potential of the motoneurons of the hypoglossus nucleus. J Cell Comp Physiol. 1947b:29:207–287. Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, Major S, Winkler MKL, Kang EJ, Schoknecht K, et al. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain. 2018:141:1734–1752. Makarov VA, Makarova J, Herreras O. Disentanglement of local field potential sources by independent component analysis. J Comput Neurosci. 2010:29:445–457. Makarova J, Ibarz JM, Makarov VA, Benito N, Herreras O. Parallel readout of pathway-specific inputs to laminated brain structures. Front Syst Neurosci. 2011:5:77. Malmivuo P, Malmivuo J, Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford: University Press; 1995 Martín-Vázquez G, Makarova J, Makarov VA, Herreras O. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials. PLoS One. 2013:8:e75499. Martín-Vázquez G, Benito N, Makarov VA, Herreras O, Makarova J. Diversity of LFPs activated in different target regions by a common CA3 input. Cereb Cortex. 2016:26:4082–4100. Mitzdorf U, Singer W. Prominent excitatory pathways in the cat visual cortex (A17 and A18): a current source density analysis of electrically evoked potentials. Brain Res. 1978:33:371–394. Montgomery SM, Betancur MI, Buzsáki G. Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J Neurosci. 2009:29:1381–1394. Mouchati PR, Kloc ML, Holmes GL, White SL, Barry JM. Optogenetic "low-theta" pacing of the septohippocampal circuit is sufficient for spatial goal finding and is inf luenced by behavioral state and cognitive demand. Hippocampus. 2020:30:1167–1193. Munro Krull E, Sakata S, Toyoizumi T. Theta oscillations alternate with high amplitude neocortical population within synchronized states. Front Neurosci. 2019:13:316. Murthy VN, Fetz EE. Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol. 1996:76:3968–3982. Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009:12:70–76. Nguyen Chi V, Müller C, Wolfenstetter T, Yanovsky Y, Draguhn A, Tort AB, Brankack J. Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J Neurosci. 2016:36:162–177. Nunez PL, Srinivasan R. Electric fields in the brain. The neurophysics of EEG. Oxford: University Press; 2006 Nunez PL, Srinivasan R. Scale and frequency chauvinism in brain dynamics: too much emphasis on gamma band oscillations. Brain Struct Funct. 2010:215:67–71. Okun M, Naim A, Lampl I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci. 2010:30:4440–4448. Orczyk JJ, Barczak A, Costa-Faidella J, Kajikawa Y. Cross laminar traveling components of field potentials due to volume conduction of non-traveling neuronal activity in macaque sensory cortices. J Neurosci. 2021:41:7578–7590. Ortuño T, López-Madrona VJ, Tapia-González S, Muñoz A, De Felipe J, Herreras O. Slow-wave activity in the S1HL cortex is contributed by different layer-specific field potential sources during development. J Neurosci. 2019:39:8900–8915. Parabucki A, Lampl I. Volume conduction coupling of whiskerevoked cortical LFP in the mouse olfactory bulb. Cell Rep. 2017:21: 919–925. Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. International J Bioelectromag. 1999:1:75–86. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci. 2018:21:903–919. Pignatelli M, Beyeler A, Leinekugel X. Neural circuits underlying the generation of theta oscillations. J Physiol Paris. 2012:106:81–92. Plonsey R. Volume conductor fields of action currents. Biophys J. 1964:4:317–328. Rall W, Shepherd GM. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol. 1968:31:884–915. Ranck JB Jr. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol. 1973:41:461–531. Ray S, Maunsell JH. Network rhythms inf luence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci. 2011:31:12674–12682. Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C. A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron. 2013:79:375–390. Rogers N, Hermiz J, Ganji M, Kaestner E, Kılıç K, Hossain L, Thunemann M, Cleary DR, Carter BS, Barba D, et al. Correlation structure in micro-ECoG recordings is described by spatially coherent components. PLoS Comput Biol. 2019:15:e1006769. Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, Buzsáki G. Theta phase segregation of inputspecific gamma patterns in entorhinal-hippocampal networks. Neuron. 2014:84:470–485. Tavares LCS, Tort ABL. Hippocampal-prefrontal interactions during spatial decision-making. Hippocampus. 2022:32:38–54. Telenczuk B, Telenczuk M, Destexhe A. A kernel-based method to calculate local field potentials from networks of spiking neurons. J Neurosci Methods. 2020:344:108871. Torres D, Makarova J, Ortuño T, Benito N, Makarov VA, Herreras O. Local and volume-conducted contributions to cortical field potentials. Cereb Cortex. 2019:29:5234–5254. Tort ABL, Ponsel S, Jessberger J, Yanovsky Y, Brankack J, Draguhn A. Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci Rep. 2018:8:6432. Varona P, Ibarz JM, López-Aguado L, Herreras O. Macroscopic and subcellular factors shaping CA1 population spikes. J Neurophysiol. 2000:83:2192–2208. Vida I, Bartos M, Jonas P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 2006:49:107–117. Whitmore NW, Lin SC. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis. NeuroImage. 2016:132:79–92. Wodeyar A, Schatza M, Widge AS, Eden UT, Kramer MA. A state space modeling approach to real-time phase estimation. Elife. 2021:10:e68803. Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci. 2006:26:6213–6229. Woodbury JW. Potentials in a volume conductor. In: Medical physiology and biophysics. Philadelphia and London: WB Saunders Co; 1960. pp. 83–91 Xing D, Shen Y, Burns S, Yeh CI, Shapley R, Li W. Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J Neurosci. 2012:32:13873–13880. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995:15:30–46. Zheng C, Bieri KW, Trettel SG, Colgin LL. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus. 2015:25:924–938.
Collections