Publication:
A tentative detection of He I in the atmosphere of GJ 1214 b

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-03-04
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EDP Sciencies
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The He I lambda 10833 angstrom triplet is a powerful tool for characterising the upper atmosphere of exoplanets and tracing possible mass loss. Here, we analysed one transit of GJ 1214 b observed with the CARMENES high-resolution spectrograph to study its atmosphere via transmission spectroscopy around the He I triplet. Although previous studies using lower resolution instruments have reported non-detections of He I in the atmosphere of GJ 1214 b, we report here the first potential detection. We reconcile the conflicting results arguing that previous transit observations did not present good opportunities for the detection of He I, due to telluric H2O absorption and OH emission contamination. We simulated those earlier observations, and show evidence that the planetary signal was contaminated. From our single non-telluric-contaminated transit, we determined an excess absorption of 2.10(-0.50)(+0.45)% (4.6 sigma) with a full width at half maximum (FWHM) of 1.30(-0.25)(+0.30) angstrom. The detection of He I is statistically significant at the 4.6 sigma level, but repeatability of the detection could not be confirmed due to the availability of only one transit. By applying a hydrodynamical model and assuming an H/He composition of 98/2, we found that GJ 1214 b would undergo hydrodynamic escape in the photon-limited regime, losing its primary atmosphere with a mass-loss rate of (1.5-18) x 10(10) g s(-1) and an outflow temperature in the range of 2900-4400 K. Further high-resolution follow-up observations of GJ 1214 b are needed to confirm and fully characterise the detection of an extended atmosphere surrounding GJ 1214 b. If confirmed, this would be strong evidence that this planet has a primordial atmosphere accreted from the original planetary nebula. Despite previous intensive observations from space- and ground-based observatories, our He I excess absorption is the first tentative detection of a chemical species in the atmosphere of this benchmark sub-Neptune planet.
Description
Ā© ESO 2022. ArtĆ­culo firmado por 30 autores. We thank the anonymous referee for discussion and comments that helped to improve the contents of this manuscript, and Almudena GarcĆ­a LĆ³pez for helping to make public the NIR transmission spectrum and EUV spectra. CARMENES is an instrument at the Centro AstronĆ³mico Hispano-AlemĆ”n (CAHA) at Calar Alto (AlmerĆ­a, Spain), operated jointly by the Junta de AndalucĆ­a and the Instituto de AstrofĆ­sica de AndalucĆ­a (CSIC). CARMENES was funded by the Max-Planck-Gesellschaft (MPG), the Consejo Superior de Investigaciones CientĆ­ficas (CSIC), the Ministerio de EconomĆ­a y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de AstrofĆ­sica de AndalucĆ­a, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Institut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de AstrofĆ­sica de Canarias, Hamburger Sternwarte, Centro de AstrobiologĆ­a and Centro AstronĆ³mico Hispano-AlemĆ”n), with additional contributions by the MINECO, the Deutsche Forschungsgemeinschaft (DFG) through the Major Research Instrumentation Programme and Research Unit FOR2544 "Blue Planets around Red Stars", the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de AndalucĆ­a. This work was based on data from the CARMENES data archive at CAB (CSIC-INTA) and made use of resources from the AstroPiso collaboration. We acknowledge financial support from the Agencia Estatal de InvestigaciĆ³n of the Ministerio de Ciencia e InnovaciĆ³n and the ERDF "A way of making Europe" through projects PID2019-109522GB-C5[1:4], PID2019-110689RB-I00, PGC2018-098153-B-C31, and the Centre of Excellence "Severo Ochoa" and "MarĆ­a de Maeztu" awards to the Instituto de AstrofĆ­sica de Canarias (CEX2019-000920-S), Instituto de AstrofĆ­sica de AndalucĆ­a (SEV-2017-0709), and Centro de AstrobiologĆ­a (MDM-2017-0737), the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins no. 832428 and via grant agreement no. 694513, the Excellence Cluster ORIGINS funded by the DFG under Germany's Excellence Strategy EXC-2094 no. 390783311, and the Generalitat de Catalunya via the CERCA programme.
UCM subjects
Unesco subjects
Keywords
Citation
Collections